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For a system of point charges that interact through the three-dimensional electrostatic Coulomb potential
~without any regularization! and obey the laws of nonrelativistic quantum mechanics with Bose or Fermi
statistics, the static correlations are expressed in terms of Mayer-like diagrams. The exchange effects are taken
into account systematically and the long-range Coulomb divergencies are exactly resummed in order to get
finite diagrams. For this purpose, in the framework of the grand canonical ensemble, the matrix elements of the
imaginary-time evolution operator are represented by the Feynman-Kac functional integral according to Gini-
bre’s idea@J. Math. Phys.6, 238 ~1965!; 6, 252 ~1965!, 6, 1432 ~1965!# and we exhibit a correspondence
between the correlations in the quantum system of point particles and the distribution functions in aclassical
fluid of ‘‘exchange’’ loops with Brownianrandomshapes. The size of a loop, which corresponds to the number
of particles involved in the corresponding cyclic permutation, and the shape of a loop, which describes the
quantum fluctuations, play the part of internal degrees of freedom that must be integrated over when calculat-
ing the distributions relative to the quantum point charges. The loops interact through atwo-bodypotential that
is different from the electrostatic interaction between two charged curves: each line element of a loop interacts
only with a discrete number of line elements in every other loop. The linear response theory to an infinitesimal
external charge distribution can be written in this formalism by a formula analogous to that of classical
statistics, and the loop-fugacity and loop-density expansions of the loop-distribution functions are derived by
the usual techniques of Mayer diagrams generalized to extended objects. At large distancesr , the loop potential
behaves as 1/r and, as in the classical case, every Mayer diagram diverges. However, this nonintegrable tail is
independent of the shape of the loops and it isexplicitly and exactly resummed by a generalization of the
method developed by Meeron@J. Chem. Phys.28, 630 ~1958!; Plasma Physics~McGraw-Hill, New York,
1961!#, for classical fluids of point entities. Auxiliary 1/r bonds are introduced and subdiagrams involving
chains of 1/r bonds are integrated over first in a systematic way. The new diagrams contain bonds between
loops that decay either exponentially or algebraically, with a 1/r 3 leading term, and the new diagrams are at
least conditionally integrable. The part of the quantum particle-particle correlation arising directly from ex-
change, which is derived from the density of loop, decays faster than any inverse power law, whereas, as
shown in the following paper@Phys. Rev. E53, 4595~1996!#, the whole quantum particle-particle correlation,
which also involves the correlations between loops, decays only as 1/r 6. @S1063-651X~96!05105-7#

PACS number~s!: 05.30.2d, 71.45.Gm

I. INTRODUCTION

The present series of papers is concerned with the equi-
librium static correlations in matter under usual conditions.
In this case, strong, weak, and gravitational interactions are
negligible @3# and the electrons and nuclei can be seen as
point charges that interact through the three-dimensional
electrostatic Coulomb force and obey the laws of nonrelativ-
istic quantum mechanics with the adequate~Fermi or Bose!
quantum statistics. The correlations between the chargesea

~wherea is an index for thens various species! are to be
determined in the framework of quantum statistical mechan-
ics with the pair potentialeaegvC(r )5eaeg/r ~with r the
distance between the particles!. The pure 1/r behavior is
subtle to be handled at both short and long distances. The
short-range singularity would lead to an implosion of the
system if all the negative charges, in the present case the
electrons, did not obey Fermi statistics@4,5# ~see Sec. II!.

The fast growth of the fermionic kinetic energy when the
density increases is needed to balance the attraction between
opposite charges.~The same would be true for integrable
potentials such as the Yukawa potential.! On the other hand,
nonintegrable potentials~that fall off with distance as, or
more slowly than, 1/r 3! usually have no thermodynamic
limit. However, the long range of the Coulomb potential
does not lead to an explosion of the system.

The harmonicity of the 1/r potential is responsible for a
very special screening effect, while the thermodynamic limit
@6# ~see Sec. II! exists for systems in which a local neutrality
can be realized in the bulk, though the harmonicity is prob-
ably not a necessary condition for the existence of the ther-
modynamic limit@7#. At equilibrium, the local distribution of
particles is sufficiently neutral and isotropic so that, accord-
ing to Newton’s theorem, the electrostatic field vanishes in
the bulk. At a macroscopic level, this is exemplified by the
local neutrality relation between the densitiesra of the vari-
ous species

(
a

eara50. ~1.1!

This local neutrality also appears if the force decreases faster
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@8# or slower @9# than the Coulomb interaction and if the
state is invariant under some translation group. At a micro-
scopic level, the distribution of particles of speciesa8 around
a chargeea is described by the particle-particle correlation
raa8
(2)T(r ) and Coulomb screening means that any chargeea in
the bulk is surrounded by a polarization cloud with a total
charge exactly equal to2ea ,

E dr(
a8

ea8

raa8
~2!T

~r !

ra
52ea . ~1.2!

Subsequently, the total effective potential created by a
charge and its cloud at large distances is no longer the bare
1/r Coulomb potential. Moreover, the induced charge den-
sity in the presence of an external~classical! infinitesimal
charge is exactly related to some charge distribution function
through the linear response theory and Eq.~1.2! implies that
the total induced charge is finite in a classical as well as in a
quantum plasma, in a conductive as well as in a dielectric
phase. Moreover, a Coulombic system in dimension 3 is al-
ways in a conductive phase, so that the total induced charge
around an infinitesimal distribution of chargedq~r ! exactly
compensates the infinitesimal total external charge

E dr(
a

eara
ind~r !52E dr dq~r !. ~1.3!

According to the linear response theory,~1.3! implies a sum
rule for the second moment of the charge-charge correlation
function in the classical case@10# ~Stillinger-Lovett sum-
rule! and for some response-function~inverse static dielectric
function!, which is indirectly linked to the charge-charge
correlation, in the quantum case@11# ~see Sec. IV!. We no-
tice that the screening rules~1.1!–~1.3! are compatible with a
sufficiently fast algebraic decay of the correlations in plas-
mas in the classical as well as in the quantum case@11#.

The point of the present series of papers~hereafter re-
ferred to as the present paper and paper II! is to show that the
particle-particle correlation function in a multicomponent
plasma does have a 1/r 6 tail, when the statistics is taken into
account and the interaction is the pure Coulomb potential
~without any regularization!. Moreover, the induced charge
density in the presence of a localized external infinitesimal
charge and the charge-charge correlation are shown to decay
as 1/r 8 and 1/r 10, respectively. A review of the previous
works about the precise question of these decays is post-
poned to the Introduction of paper II. The standard perturba-
tion many-body theory proves not to be very helpful for the
investigation of these tails in multicomponent plasmas~as
detailed in the following! and in the present paper we build a
formalism in which the Feynman-Kac formula@12# is used to
write the grand partition function of quantum particles as the
Maxwell-Boltzmanngrand partition function of ‘‘exchange’’
loops interacting through atwo-body potential, in a way
slightly different from the formulas obtained by Ginibre@1#.
This paper allows one to calculate the quantum correlations
in terms of the density of loops, which is directly linked to
exchange statistics, and of the correlation between loops,
which is induced by interactions. Since the loop distributions
can be derived as functional derivatives of their classical
grand partition function, diagrammatics that take the ex-

change effects into account systematically can be built by
analogy with the usual Mayer diagrams of classical fluid sta-
tistics @13,14#. The diagram divergencies that are associated
with the nonintegrability of the Coulomb potential are dealt
with by means of an exact global resummation, which is
analogous to that performed for classical plasmas by Meeron
@15,2#. Some arbitrariness lies in such resummations and the
choice made in the present work is aimed to exhibit the ex-
ponential screening of charge-charge and multipole-charge
interactions and the 1/r 3 tail of the partially screened
multipole-multipole interactions. Indeed, in paper II, the re-
summed diagrammatics are used to show that the quantum
particle-particle correlation decays as 1/r 6 and to display
clearly how the spherical symmetry of the interaction and of
the quantum fluctuation distribution for one particle, together
with the harmonicity of the Coulomb potential, enforce this
power law. Besides, the Mayer-like diagrammatics allow one
to exhibit how the exponential classical macroscopic screen-
ing makes the power law 1/r 6 for the particle-particle corre-
lation fall off to 1/r 8 and 1/r 10 for the induced charge density
and the charge-charge correlation, respectively. Ultimately,
this formalism provides low-density expansions for weakly
degenerated quantum systems and, in particular, for the co-
efficient of the previous 1/r 6 tail, as shown in another paper
@16#.

The program is achieved in the grand canonical ensemble
by using the Feynman-Kac formula to represent the matrix
elements of the imaginary-time evolution operator in terms
of Wiener functional integrals. The complexity due to the
noncommutativity of the quantum operators for point par-
ticles is replaced by that of performing path integrals, but
meanwhile the exponential of the Hamiltonian of the whole
system is factored out into a product of scalar exponentials;
if the quantum particles interact through two-body forces,
each of these scalar exponentials only involves either a two-
body potential or the squared distance between two particles
that are permuted with each other under a cycle. The quan-
tum system of point particles proves to be equivalent to a
classical fluid of ‘‘filaments’’ with Brownian random shapes
that describe the quantum fluctuations. This point of view is
interesting in at least three respects. First, from a technical
point of view, the difficulties associated with the noncommu-
tating operators are circumvented and methods of classical
statistics can be adapted to the quantum case@1,17–19#, as
Ginibre did in order to show that low-density expansions of
thermodynamic functions are convergent for some class of
integrable potentials. The reduced density matrices~quantum
analogs of the classical Ursell functions! were expressed in
terms of scalar functions and the algebraic formalism intro-
duced by Ruelle in the classical case could be transposed to
the quantum system. Second, the Feynman-Kac representa-
tion provides helpful insight in mechanisms involving quan-
tum fluctuations@20–22#. For instance, since the extent of a
filament is proportional to\, the equivalence is convenient to
build diagrams that give\ expansions for the semiclassical
regime in a more systematic way than the usual Wigner-
Kirkwood method@20#. Third, the equivalence is useful to
disentangle easily the effects of quantum dynamics from
those of quantum statistics. A particle that is not exchanged
with any other one in a given density-matrix element is as-
sociated with a closed filament, whereasp particles that are
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permuted with one another under a cyclic permutation are
described byp open filaments. Then two approaches can be
investigated. In the methods used previously for plasmas, the
exchange effects were treated perturbatively with respect to a
reference system with Boltzmann statistics@23–27#. In the
point of view chosen in the present paper, the open filaments
are collected into~closed! ‘‘exchange’’ loops@1#.

The picture that arises from our approach can be summed
up as follows. A loopL is characterized by its positionR
~the position of one of the particles involved in the loop! and
its internal degrees of freedom. The latter are the speciesa of
the corresponding particles, the sizep of the loop~defined as
the number of particles exchanged under the corresponding
cyclic permutation!, and its shapeX ~the positions of the
other particles and the random Brownian paths that connect
them together!. The fugacity of a loop contains a contribu-
tion that describes the exchange in an ideal gas and a contri-
bution from the self-energy of the loop. Moreover, the loop
‘‘fugacities’’ in the present formalism are not necessarily
positive; for fermions, the sign of the loop fugacity depends
on the number of particles involved in the loop. The self-
energy of a loop is positive and the absolute value of the
fugacity of interacting loops is lower than for noninteracting
loops.~The interaction between identical charges is repulsive
and tends to reduce the importance of the exchange effects.!
In the potential between loops, each line element of a loop,
with a curve abscissat, interacts through the Coulomb po-
tential only with thep8 line elements of the other loop of size
p8 whose curve abscissat8 differs from t by an integer.~In
dimensional units, the corresponding imaginary time runs
from 0 to pb\.! Thus the multipole-multipole part of the
forces between the loops is different from the electrostatic
interaction and is not exponentially screeneda priori. The
distribution functions for the quantum particles are derived
from the distribution functions of the loops by integration
over the internal degrees of freedom. The density of the
quantum charges is obtained from the density of loops by a
summation over the various sizes of loops and an integration
over their shapes. The part of the particle-particle correlation
that comes from configurations where the two considered
particles are exchanged within a cycle appears as a contribu-
tion from the loop density integrated over its internal degrees
of freedom except two particle positions; the part of the
particle-particle correlation built by configurations where the
particles are not exchanged together comes directly from the
loop correlations. Though the two-body potential between
loops with sizes p and p8 corresponds in fact to a
(p1p8)-body potential for the corresponding exchanged
quantum point particles, the loops obey classical statistics
and interact through atwo-bodypotentialeaea8v~L,L8! be-
tween objects with an internal structure.

As a consequence, in order to get expansions in powers of
the fugacity or of the density of loops, the usual techniques
of Mayer diagrams for point entities can be generalized to
the system of loops, though the latter is made of objects with
various internal degrees of freedom, namely,~a,p,X!, which
interact through a potential involving not only the distance
but also the internal degrees of freedom. Each point of the
Mayer diagram is associated with both the position and the
internal degrees of freedom of a loop. Two points are linked
by at most one bondf5exp@2beaea8v~L,L8!#21, with

b51/kBT. In the integral corresponding to a given diagram,
each internal point is associated with a measure*dL
5(a51

ns (p51
` *dR*D(X) and a weightz~L! @r~L!# for the

loop-fugacity @loop-density# expansions. The diagrams can-
not be calculated explicitly at finite loop fugacity@density#
because the weightza,p~X! @ra,p~X!# of each point is a com-
plicated function of the shapeX of the exchange loop, which
can be calculated only perturbatively. At large distancesr ,
the potential between the loops behaves as the 1/r interaction
between the total charges of the loops~the total charge of a
loop is the sum of the charges of the corresponding par-
ticles!. As in the classical case, every Mayer graph diverges
because of the nonintegrable long range of the Coulomb po-
tential. By taking advantage of the fact that the 1/r asymp-
totic behavior of the potential does not depend on the shapes
of the loops, these tails areexplicitly andexactlyresummed
by a generalization of the method developed by Meeron. The
auxiliary bonds~which are introduced in the process in a
partially arbitrary way! are chosen to exhibit the decomposi-
tion of the loop potential into charge-charge, multipole-
charge, and multipole-multipole interactions. The subdia-
grams involving chains of 1/r bonds are integrated over first.
The corresponding collective effect ensures that the charge-
charge and charge-multipole interactions are exponentially
screened, as in the classical case, with a screening length that
coincides with the classical Debye-Hu¨ckel value when the
exchange effects become negligible. However, the
multipole-multipole interaction is only partially screened and
the corresponding Mayer bond decays algebraically at large
distances, with a dipole-dipole-like leading term. Subse-
quently, the loop correlation decays as 1/r 3, while the loop
density falls off faster than any inverse power law when the
distance between the positions of two particles involved in
the loop becomes infinite because of the part of the loop
fugacity that comes from the exchange in vacuum. Eventu-
ally, the part of the quantum particle-particle correlation that
emerges directly from exchange decays faster than any in-
verse power law~except in a phase analogous to a Bose
condensation, where the correlation tends to a finite constant
value plus fast-decaying corrections!. As shown in paper II,
the part of the particle-particle correlation arising from con-
figurations where the particles are not exchanged together
under the same cyclic permutation behaves as 1/r 6 at large
distances.

The existence of the 1/r 3 dipole-dipole-like interaction be-
tween the charges surrounded by their polarization clouds
can be traced back in other formalisms that go beyond the
mean-field approach. This interaction appears in some inter-
mediate quantities that we call ‘‘chain potentials,’’ because
they are obtained by summing chains of auxiliary bonds with
the aim of taking into account the collective effects that par-
tially screen the large-distance Coulombic tails of the corre-
sponding bare potential. For instance, in the standard many-
body theory, the chain potential is the random-phase
approximation effective potential. Other examples in the ap-
proximation of Maxwell-Boltzmann statistics can be found
in Refs.@21, 25# and its classical analog is the Debye-Hu¨ckel
potential. At finite temperature, the resulting chain potential
has a short-ranged part and a long-ranged part that decays
algebraically. The first model of quantum plasma to be in-
vestigated was the one-component plasma~OCP!, also called
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the ‘‘jellium’’; it is a system made up with identical point
particles that move in acontinuousuniform fixed back-
ground of the opposite charge that ensures the local neutral-
ity ~1.1!. In the particular case of the OCP, where the particle
and charge densities are proportional to each other, two sub-
sequent exact sum rules allow one to show that an algebraic
falloff of the basic graphs of the standard formalism~proper
polarization graphs! might lead to an algebraic falloff of the
particle-particle correlation~if compensations do not occur!.
However, in the case of multicomponent plasmas, these rules
do not hold and one cannot iterate the arguments that can be
developed for the OCP. Eventually, the point of view of the
Feynman-Kac representation proves to be the most adequate
one for the investigation of the large-distance behaviors of
the correlations and induced charge density in a multicom-
ponent plasma. In particular, it allows one to study the coef-
ficients of the algebraic tails at low density, as shown in
another paper@16#.

The paper is organized as follows. In Sec. II A we recall
known results about the stability of Coulomb systems and
the existence of the thermodynamic limit of the quantum
grand partition functionJ. The distribution functions are
introduced in Sec. II B. In Appendix A we show how, for a
Hamiltonian independent from the spin, the notion of ‘‘ex-
change loops’’ emerges from the fact that any permutation
can be expressed uniquely as a product of cycles with no
common elements. The Feynman-Kac formula then leads
straightforwardly to the equality betweenJ and the grand
partition function of a classical gas of exchange loops inter-
acting via a two-body potential~Sec. III A!. In Sec. III B we
give a compact formulation of the equivalence, which is par-
ticular to the present work. A multipolar decomposition of
the loop potential~Sec. III C! shows that the difference be-
tween the loop potential and the electrostatic potential be-
tween charged loops appears only in the multipole-multipole
part of the interaction.~This remark is valid for any poten-
tial.! In Sec. III D the distribution functions of the classical
loops are rewritten in terms of functional derivatives of the
grand partitionJ with respect to the fugacities of the loops,
by means of formulas analogous to those encountered in
classical statistics. The correspondence between the quantum
system of point particles and the classical system of loops
allows one to relate the distribution functions of the quantum
particles to those of the exchange loops~Sec. IV A!. These
general formulas are checked in the noninteracting case~Sec.
IV B !. The theory of linear response to an external static
charge distribution is displayed in Sec. IV C: the induced
charge is written in terms of the loop distributions and then
in terms of the charge-charge correlation function. In Sec.
IV D two sum rules describing Coulombic screening are de-
rived in the present formalism. The finiteness of the total
induced charge allows one to retrieve the zero-moment sum
rule that is obeyed by the charge-charge correlation accord-
ing to ~1.2!; moreover, it implies the positiveness of an ex-
pression that involves the zero moment of the part of the
correlation directly induced by quantum statistics. The per-
fect screening sum rule~1.3! specific to a conducting phase
is given in terms of the second moment of the charge-charge
correlation plus a quantum correction involving the loop dis-
tributions. In Sec. V we introduce the virial diagrams for the
system of loops, the Coulomb divergencies are resummed,

and the part of the correlation arising from exchange statis-
tics is shown to decay faster than any inverse power law. The
technical lines of Sec. V are summed up at the beginning of
the section. As a conclusion, the exchange loop formalism is
compared with the standard many-body perturbation formal-
ism in Sec. VI. In Sec. VI A the general structures of both
diagrammatics are compared and the linear response that
gives the indirect relation between the induced charge den-
sity and the quantum particle-particle correlation is recalled
for a multicomponent plasma in the standard many-body per-
turbation theory. In both formalisms, the diagram divergen-
cies that are linked to the large-distance nonintegrability of
the Coulomb potential are dealt with by an exact partial re-
summation of subdiagrams that are kinds of interaction-line
chains ~Sec. VI B!. The corresponding chain potential in-
volves an algebraic part, but the consequence of the large-
distance behavior of the quantum particle-particle correlation
can be investigated in the standard perturbation theory only
in the case of the one-component plasma~Sec. VI C!.

II. GRAND CANONICAL ENSEMBLE

A. Stability and thermodynamic limit

In this series of papers we consider systems made ofns
speciesa of point charges~a51,...,ns! in an infinite volume.
Let Na be the number of charges of speciesa. The particle
with index i ( i51,...,(aNa) has a chargeea i

, a massma i
,

and a spin numberSa i
. Its quantum state is characterized by

its position r i and the projection\Sa i
z ( i ) of its spin \Sa i

along a given axisz ~Sa i
z can take the 2Sa i

11 values

2Sa i
, 2Sa i

11,...,Sa i
and \ is the Planck constant!. The

charges interact through the Coulomb pair potential
ea i

ea j
vC(r i j )5ea i

ea j
/r i j ~with r i j5ur i j u andr i j5r j2r i! and

their quantum Hamiltonian operatorĤ $Na% in position repre-
sentation reads

Ĥ $Na%5(
i

S 2\2

2ma i
DD r i

1
1

2 (
iÞ j

ea i
ea j

r i j
. ~2.1!

First, we recall some results about the canonical ensemble.
The stability of matter with respect to an implosion that

would be induced by the strong 1/r attraction between
charges with opposite signs is a subtle question. For a system
with a finite number of particles, the Hamiltonian~2.1! has a
finite lower bound@28# ~and, in particular, the atoms are
stable!. The uncertainty principle arising from quantum dy-
namics ensures that a localized particle has a large kinetic
energy that balances the attractive potential energy and this
prevents any finite set of charges from collapsing together.
Henceforth, at the inverse temperatureb51/kBT, the canoni-
cal partition function of the system confined in a box of finite
volumeL,

Q~b,$Na%,L!5TrL e2bĤ$Na%, ~2.2!

is finite. In ~2.2! the trace Tr is taken over a basis of quantum
states that are symmetric~antisymmetric! with respect to the
permutations of theNa particles of the same bosonic~fermi-
onic! speciesa. The wave functions vanish on the wall of the
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box ~Dirichlet boundary conditions! and the trace Tr depends
on the shape and on the sizeL of the box. Moreover, if there
is no collapse in the thermodynamic limit~stability of bulk
matter!, the energy per particle must have a lower bound and
this bound must be independent of the positions of the par-
ticles and of the size(a Na of the system. This is the so-
called H-stability conditionH $Na%.2B(aNa. Dyson and
Lenard@4,5# showed that, thanks to the Pauli principle, the
fermionic kinetic energy increases with the density suffi-
ciently fast so as to compensate the Coulomb attraction en-
ergy between opposite charges and theH stability requires
all species with negative and/or positive charges to be fermi-
ons. This condition is met in real matter where all the nega-
tive charges~electrons! are fermions. The density of free
energyFL~b,$ra%!5~1/bL!ln Q per unit volume may have
an intensive thermodynamic limit.

On the other hand, if the global net charge is not too large,
the system does not explode, in spite of the long-ranged re-
pulsion between charges with opposite signs, and the Gibbs
formalism has a proper thermodynamic limit. This was re-
markably shown by Lieb and Lebowitz@6# via an argument
that exhibits the fundamental physical mechanisms. When a
domain is packed with spheres, the densities inside the
spheres are radial because of the rotational invariance of the
potential. According to Newton’s theorem, outside an isotro-
pic distribution of charge, all the charge appears to be con-
centrated at the center. So, despite the long-ranged nature of
the Coulomb potential, the various neutral parts of a system
far away from each other are approximately independent
and, by taking the thermodynamic limit of the Gibbs canoni-
cal partition function, one gets an extensive energy and an
extensive free energy together with the intensive thermody-
namic variables, such as the pressure. Moreover, if the sys-
tem is overall neutral, the free energy does not depend on the
shape of the domains used in the process that leads to the
infinite volume limit, as it is the case for potentials that are
short ranged. However, the long-ranged nature of the Cou-
lomb forces has manifest consequences if the global neutral-
ity is not satisfied. In the canonical ensemble, if the excess
charge is both ‘‘non-negligible’’ and ‘‘not too large,’’ it goes
to a thin layer near the surface of the system and the density
of free energy per unit volume is the sum of the free-energy
density of a neutral system plus a term that involves the
shape-dependent electrostatic capacity. If the net charge is
too large, the density of free energy explodes in the infinite
volume limit.

The latter property is linked to the equivalence between
the various statistical ensembles@6#, which is quite particular
in the case of Coulomb interactions. The thermodynamic
properties~or intensive variables! are the same whether they
are given by the grand canonical ensemble~which involves
nonneutral systems! or by the canonical or microcanonical
ensembles for neutral systems. Indeed, let us consider the
quantum grand partition function of the system when a
chemical potentialma is associated with each speciesa,

J~b,$ma%,L!5 (
$Na%a51,...,ns

TrLH expF2bS Ĥ $Na%

2(
a

maN̂aD G J , ~2.3!

whereNa runs from 0 to`. Regardless of the choice of the
chemical potentialsma of the various species, the non-neutral
systems in~2.3! make a vanishingly small contribution to the
grand canonical pressure and the densities of the various spe-
cies that appear in the thermodynamic limit obey the neutral-
ity requirement~1.1!. Moreover, in the grand canonical en-
semble, a finite density of charge in the infinite volume limit
cannot appear because the self-energy of the corresponding
surface charge becomes infinite and its contribution toJ is
exponentially small.

We mention also the results about the OCP, where there is
only one species of moving charges immersed in a continu-
ous uniform fixed background of the opposite sign.@Its clas-
sical version is a model for classical ions moving in the rigid
bath made up by degenerate quantum electrons@29#. The
quantum OCP is often used as a first approximation for the
description of the conduction electron fluid in a metal when
the Fermi surface is nearly spherical~for instance, in alkali
metals! and when the electron-phonon interactions are not
relevant for the phenomena to be studied@30#.# In the case of
the OCP, the Hamiltonian involves the self-energy of the
background and the interaction of the background with the
moving charges. TheH stability holds in the classical sense
and Fermi statistics is not required@31#. The neutral and
non-neutral canonical ensembles have well-defined thermo-
dynamic limits, as in the case of multicomponent plasmas.
The grand partition function in which the background den-
sity rB is fixed ~so that the system is not neutral, except for
one value ofN! exists. ~The grand partition function in
which the system is neutral for everyN diverges in the clas-
sical case and in the quantum bosonic case, even for a finite
volume, and is finite only in the quantum fermionic case,
where the kinetic energy dominates the electrostatic contri-
bution.! In the infinite volume limit, the density in the bulk is
equal to the density of the background.

According to the general formalism of statistical mechan-
ics, the average value of an operatorÔ in the Fock space is
given by

^Ô&JL
5

1

J~b,$ma%,L! (
$Na%a51,...,ns

TrLH Ô$Na%

3expF2bS Ĥ $Na%2(
a

maN̂aD G J . ~2.4!

In the limit of an infinite volume, the thermodynamic func-
tions in the bulk become independent from the boundary
terms arising from the interactions with the walls. Subse-
quently, when considering the average values~2.4!, we can
take states that extend over an infinite volume from the be-
ginning of the calculations.

B. Distribution functions

The local densityr a,L
Q ~r ! of the quantum particles of spe-

ciesa is the average value of the operator

r̂a~r !5(
i

da i ,a
d~r i2r !. ~2.5!
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In the same way, the quantum truncated two-body distribu-
tion functionraaab ,L

(2)TQ (ra ,rb) for speciesaa andab is defined

as

raaab ,L
~2!TQ ~ra ,rb!5K (

iÞ j
da i ,aa

da j ,ab
d~r i2ra!d~r j2rb!L

JL

2raa ,L
Q ~ra!rab ,L

Q ~rb!. ~2.6!

In the following, we use the superscriptQ systematically in
order to distinguish quantities calculated with the quantum
statistics from averages obtained with the Maxwell-
Boltzmann statistics. For a finite system, according to~2.4!,
and sinceN̂a5*Ldr 8r̂a~r 8!, one gets the same relation as in
classical statistics

]ra,L
Q ~r !

]~bma!
U

b,L

5E
L
dr 8^r̂a~r !r̂a~r 8!&JL

2^r̂a~r !&JL
E

L
dr 8^r̂a~r 8!&JL

5ra,L
Q ~r !1E

L
dr 8raa,L

~2!TQ~r ,r 8!. ~2.7!

There is no rigorous result about the existence of the ther-
modynamic limit of the correlations for Coulomb potential.
However, the following arguments of the paper might give
some hints for a mathematical proof. Moreover, for a quan-
tum two-component plasma of distinguishable and symmet-
ric opposite charges interacting through a Coulomb potential
regularized at the origin, the thermodynamic limit of the cor-
relations in the grand canonical ensemble exists at arbitrary
temperatures and chemical potentials@32#. We assume that,
in the case of a generic multicomponent plasma with quan-
tum statistics, the thermodynamic limit still exists and is in-
dependent from boundary effects.

The translational invariance of the Coulomb potential im-
plies that, in the thermodynamic limit and in the bulk,r a

Q~r !
is independent fromr , while raaab

(2)TQ(ra ,rb) depends onra
and rb only through the distancer ab5ura2rbu. The uniform
bulk density r a

Q can be calculated as ra
Q

5 limL→`^Na /L&JL
and can be derived directly from the

infinite volume limit of ~1/L!lnJL ,

ra
Q5 lim

L→`

1

L

]~ ln JL!

]~bma!
5

]P

]ma
, ~2.8!

where

P5 lim
L→`

ln JL

bL
~2.9!

is the thermodynamic limit of the grand canonical bulk pres-
sure P. In a multicomponent plasma, the grand canonical
pressure coincides with the kinetic pressure that measures the
transfer of particle momentum to the wall. However, in the
case of the OCP, the HamiltonianĤN,rB

involves the back-
ground and the grand canonical pressure is not equal to the

kinetic pressure because it contains an extra electrostatic
contribution associated with the work necessary to deform
the background@33#. ~The classical grand canonical pressure
becomes negative at low temperature, whereas the kinetic
pressure remains positive.! In the thermodynamic limit,~2.7!
reads

]ra
Q

]~bma!
U

b

5ra
Q1E dr raa

~2!TQ~r !. ~2.10!

For a multicomponent plasma,~2.10! is the usual Ornstein-
Zernicke relation. In the OCP, where there is only one spe-
cies of moving particles,~1.2! reads*dr r(2)TQ~r !52rQ and
~2.10! implies that]rQ/]~bm!50. The latter equations reflect
the fact that, in the thermodynamic limit, the fluctuations of
bulk density as well as the bulk density itself are determined
only by the density of the background and do not depend on
the chemical potential that is involved in the nonneutral
grand partition function.@We recall that, in the same way,
the bulk densities in a multicomponent plasma are linked by
the local neutrality relation~1.1! and onlyns21 chemical
potentialsma are relevant in the thermodynamic limit.# The
chemical potentialm* that appears in the usual thermody-
namic relations is another chemical potential, defined as the
variation of the free energy when one particle is added to the
neutral system, while the latter is kept neutral by a corre-
sponding change of the total charge of the background. For
instance,]rQ/]m* is related to the isothermal compressibility
xT that measures the response of the density to a variation of
the ‘‘thermal’’ pressurePu , xT5(1/rQ)(]rQ/]Pu)uT , by the
usual thermodynamic relation

]rQ

]m*
5@rQ#2xT . ~2.11!

The thermal pressurePu is defined as the opposite of the
variation of the free energy per unit volume when the back-
ground is compressed together with the moving particles, so
that the net charge of the system is kept constant@33#. It is
equal to the pressure~2.9! derived in the nonneutral grand
canonical ensemble with a chemical potentialm* ,
Pu5limL→`~1/bL!ln J„b,m* ~rB!,rB ,L….

III. CLASSICAL GAS OF EXCHANGE LOOPS

A. Feynman-Kac representation

In Appendix A we show how the grand partition function
J ~2.3! can be reexpressed in terms of the classes of permu-
tations with the same irreducible cyclic structure.J is writ-
ten in a basis of properly symmetrized tensorial products of
individual particle states and the permutations are expressed
as products of cycles with no common elements. Since the
permutations that have the same cyclic structure are conju-
gated to one another by a permutation and since the Hamil-
tonian is invariant under permutations of the indices of the
particles of the same species, the grand partition function of
a system where the interactions are independent of the spin
can eventually be written as
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J5 (
$np

a%
p51,... ,̀

a51,...,ns
)
np

aÞ0

1

np
a!

S ha
p21~2Sa11!epbma

p D npa

3E )
i
dr i^$rp0~ i !%ue2bĤ$np

a%u$r i%&, ~3.1!

whereu$r i%&[^ i ur i&, p0 is a composition of particular permu-
tationspa

0 characterized by the sequence$n p
a% in which n p

a

is the number of cycles involvingp particles of speciesa in
the cyclic decomposition ofpa

0 and i ranges from 1 to
(a(ppnp

a
• ha is equal to 1 for bosons and to21 for fer-

mions. The combinatorics is identical to that found by Gini-
bre for the reduced density matrices on p. 360 of Ref.@17#. A
formula analogous to~3.1!, without the spin degeneracy fac-
tor, was also retrieved by Ho”ye and Stell@19#.

The noncommutativity between the kinetic and interaction
quantum operators does not allow one to reexpress
exp(2bĤ$np

a%) as a product of exponentials, each of which

would involve the Hamiltonian of the particles that are per-
muted within a cycle ofp0. However, according to the well-
known Feynman-Kac formula@12,34#, every matrix element
in J can be written in terms of the path integral of the ex-
ponential ofi times a classical action with imaginary times
t52 ib\s. In the path integral, the kinetic terms are disen-
tangled from the interaction energies as

^$rp~ i !%ue2bĤ$np
a%u$r i%&

5)
i

F 1

~2pla i
2 !3/2

e2~rp~ i !2r i !
2/2la i

2 G
3E F)

i
D~ji !GexpS 2b

1

2 (
iÞ j

ea i
ea j

3E
0

1

ds vC@vi ,p~ i !~s!2vj ,p~ j !~s!# D . ~3.2!

vi ,p( i )(s) is a Brownian path starting fromr i at time s50
and ending atrp( i ) at s51,

vi ,p~ i !~s!5~12s!r i1srp~ i !1la i
ji~s!, ~3.3!

wherela i
is the thermal de Broglie wavelength defined as

la i
5(b\2/ma i

)1/2 andji(s) is a Brownian bridge that van-
ishes whens50 and 1. Its measureD~j!, which contains the
exponential of the kinetic part of the Euclidean action, has a
Gaussian covariance

E D~j!@j~s!#m@j~s8!#n5dm,ninf~s,s8!@12sup~s,s8!#,

~3.4!

where inf(s,s8) @sup(s,s8)# denotes the infimum@supre-
mum# of s ands8.

For a given permutationp0, we make a partition of the
variables$r i% and order them in such a way that the new
variablex l

a,p,k denotes the position of a particle of speciesa
that is permuted underp0 inside thekth cycle of lengthp
(k51,...,n p

a), with l changed intol11, for l51,...,p21
and l5p changed intol51 underp0. Let v l

a,p,k be the
Brownian path linkingx l

a,p,k to x l11
a,p,k, andj l

a,p,k the corre-
sponding Brownian bridge. The so-calledkth ‘‘loop’’ of spe-
cies a and length p is the object
L k

a,p5~a,p,k,$x l
a,p,k%l51,...,p, $j l

a,p,k%l51,...,p! ~see Fig. 1!
and we use the notationD~L k

a,p![P l51
p @dx l

a,p,kD~j l
a,p,k!#.

With every loop we can associate a fugacity

z~Lk
a,p!5za,p* e2bEb

int
~Lk

a,p
!, ~3.5!

where

za,p* 5ha
p21~2Sa11!

1

p S ebma

~2pla
2 !3/2D

p

. ~3.6!

Eb
int is an internal energy defined as

FIG. 1. Potential between two exchange loops
L I5~a I ,pI53; RI5x1

I ; $t 1
I 5x2

I 2x1
I , t 2

I

5x3
I 2x2

I %, $j1
I ,j2

I ,j3
I %! and LJ5~aJ ,pJ51,

RJ5x1
J,j1

J!, defined by the integral overt andt8
~3.13!. ~A bold j represents a vectorj and, for
conciseness, we have denoted a pointxi1la iji in
a loop only by la i .! The contribution from a
given t85s, with 0<s<1, reads

eaI
eaJE

0

pI
dt d„@t2P~t!#

2@t82P~t8!#…vC„VI~t!2VJ~t8!…

5ea I
eaJ(l51

3

v„VI~ l1s!2VJ~s!…

and is represented by three solid lines. The shape
j made with Brownian paths may have some er-
ratic structure and the Brownian paths may cross
themselves or each other.~However, in dimen-
sion 3, such paths have a vanishing measure.!
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Eb
int~Lk

a,p!5
1

b2la
2 (
l51

p

~xl11
a,p,k2xl

a,p,k!2

1
ea
2

2 (
lÞ l 8

E
0

1

ds vC@vl
a,p,k~s!2vl 8

a,p,k
~s!#,

~3.7!

with the conventionxp11[x1. The interaction potential be-
tween the loops is

v~Lk
a,p ,Lk8

a8,p8!5(
l51

p

(
l 851

p8 E
0

1

ds vC@vl
a,p,k~s!

2vl 8
a8,p8,k8~s!#. ~3.8!

With these notations,~3.1! can be written as the grand par-
tition function of a classical gas of objectsL k

a,p interacting
through the potential~3.8!,

J5J loop[ (
$np

a%
p51,... ,̀

a51,...,ns
)
np

aÞ0

1

np
a!
E )

~a,p!/np
aÞ0

3)
k51

np
a

@z~Lk
a,p!D~Lk

a,p!#

3expS 2b
1

2 (
a,a8

eaea8(
p,p8

(
k,k8

* v~Lk
a,p ,Lk8

a8,p8!D ,
~3.9!

where(k,k8
* means that ifa5a8 andp5p8, thenkÞk8.

B. Compact formulation

J can be written in an even more compact form by label-
ing a loop with only one indexI ~I51,...,N with N
5(a51

ns (p51
` np

a! and by using the notationL I5LkI

a I ,pI. Ac-

cording to the identity

(
$np

a%
p51,... ,̀

a51,...,ns
)
np

aÞ0

1

np
a!

E )
I51

(a,pnp
a

D~LkI

a I ,pI !•••

5 (
N50

`
1

N! E )
n51

N

dLn••• , ~3.10!

with the notation*dLn5(an51
ns (pn51

` *D(Lkn

an ,pn), ~3.9!

reads

J loop5 (
N50

`
1

N! E )
n51

N

@z~Ln!dLn#

3expS 2b
1

2 (
IÞJ

ea I
eaJ

v~L I ,LJ! D . ~3.11!

In ~3.11! we use the convention that, ifN50, there is noLn
in the corresponding term ofJloop and this term is merely
equal to 1.

The loopL I can be described by a closed curveVI ,
which is parametrized by an abscissat ranging from 0 topI ,

VI~t!5(
l51

pI

dP~t!,l21vl
I@t2~ l21!#. ~3.12!

In ~3.12! P~t! denotes the integral part oft @for instance,
VI~t50![v 1

I ~s50!5x 1
I # and we set VI(t5pI)

5 limt→p
I
2vpI

I @t2(pI21)#5vpI
I (s51)5x1

I . The potential

between loops~3.8! can be expressed as

v~L I ,LJ!5E
0

pI
dtE

0

pJ
dt8d„@t2P~t!#

2@t82P~t8!#…vC@VI~t!2VJ~t8!#.

~3.13!

It is represented in Fig. 1. The internal energyEb
int ~3.7! is

the sum of two terms: the internal energy of a noninteracting
loop Eb

0~L I! and a self-interaction energyEself~L I!. The
former reads

Eb
0~L I !5Eb

0~$xl
I%![

1

b2la I
2 (

l51

pI

~xl11
I 2xl

I !2. ~3.14!

For noninteracting loops, the average extent of the curveVI ,
i.e., the average distancesux l11

I 2x l
I u and the average extent

of the Brownian bridgesla I
j l

I , with l51,...,pI , increases
when the temperature is lowered. The self-interaction energy
can be written as

Eself~L I !5 1
2ea

2E
0

pI
dtE

0

pI
dt8~12dP~t!,P~t8!!d~@t2P~t!#

2@t82P~t8!# !vC@VI~t!2VI~t8!#. ~3.15!

The self-interaction energyEself~L I! is different from the
self-energy of a classical loop, which is equal to12
ea
2*0

pIdt*0
pIdt8@12d(t2t8)#vC@VI(t)2VI(t8)#, but, as

the latter, it does not contain any short-distance singularity.
Since all the particles inside a loop have the same charge and
since the potentialvC is a positive function of the distance,
the self-interaction energy is positive and the internal energy
of a loop~3.7! is larger than in the noninteracting case, what-
ever the signs of the particles are. Henceforth, according to
~3.5!, the absolute value of the fugacity of the interacting
loops is lower than that of the noninteracting loops with the
same chemical potentialma ,

uz~L I !u,uz0~L I !u5uza,p* ue2bEb
0

~$xl
I %!. ~3.16!

The weight of loops with many interacting exchanged par-
ticles is lowered with respect to its value in the noninteract-
ing case. In some sense, the repulsive interaction between
identical particles reduces the exchange effects.

The formula~3.11! can be checked readily in two cases:
first, for a system of noninteracting particles, as shown in
Sec IV B, and second, for any interacting system, in the
semiclassical limit. Indeed, when\ tends to zero without
strictly vanishing, the internal energy~3.7! of every loop
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with a ‘‘size’’ p>2 becomes infinite, because of the contri-
butionEb

0~La,p!, and the weightz~La,p! becomes exponen-
tially small. In such a regime, the exchange effects are neg-
ligible: there is no exchange loop with a sizep>2, but only
closed Brownian ‘‘filaments’’La,15~a,r ,j! with shapesj.
In the formula~3.11!, the summation overp is reduced to its
first term p51 and *dL z~L! is merely equal to
(a51
ns *dr*D(j)za,1* . Thus we retrieve the expression of Ref.

@25# for the grand partition function in Maxwell-Boltzmann
statistics. The latter was derived directly from the fact that
the trace in the Maxwell-Boltzmann grand partition function
is reduced to diagonal matrix elements, which correspond
only to closed filaments interacting through the potential

v~La I ,1,LaJ,1!5E
0

1

ds v@r I2r J1la I
jI~s!2laJ

jJ~s!#.

~3.17!

In the strict classical limit \50, laj50 and
v(La I ,1,LaJ,1)5v(r I2r J); since *D~j!51, the Brownian
bridge j disappears in the expression ofJ and we retrieve
the classical grand partition function.

For conciseness, we introduce the following new vari-
ables. We callRI[x 1

I the ‘‘position’’ of the loopL I @we
could also have chosen the centroidRI5(1/p)( l51

p x l
I#. The

‘‘shape’’ of the loop is

XI~t![VI~t!2RI5(
l51

pI

dP~t!,l21F S (
l 851

l21

t l 8
I D 1@t2P~t!#t l

I

1la I
jl
I@t2P~t!#G , ~3.18!

where the segmentst l
I join the positions of the particles in

the loop, t l
I[x l11

I 2x l
I for l51,...,p ~t p

I 5x 1
I 2x p

I ! and
( l51
p t l

I50. The internal energyEb
int~L I! of a loopL I de-

pends only on the internal degrees of freedom that include
the speciesaI , the sizepI , and the shapeXI of the loop. The
integration measure*dL can be decomposed into a contri-
bution from the position of the loop and a contribution from
the internal degrees of freedom*dL5*dR*D~X! with

D~X![)
l52

p

dxl)
l51

p

D~jl !5)
l51

p

dt ldS (
l51

p

t l D)
l51

p

D~jl !.

~3.19!

~We mention that, in the Maxwell-Boltzmann approxima-
tion, where there are only loops with sizep51, each loop is
reduced to a Brownian bridge with a shapej located atr , the
position of the sole corresponding quantum particle; thenR
is replaced byr andX by j.!

C. Multipolar decomposition of the loop potential

In order to exhibit the difference between the loop inter-
action and the interaction between classical extended objects,
we introduce a ‘‘multipolar’’ decomposition of the potential
v defined in~3.13!. We start from the Taylor expansion ofv
that exhibits the asymptotic behavior ofv at large distances,

v~L i ,L j !5pipjvC~Ri j !1E
0

pi
dtE

0

pj
dt8

3d„@t2P~t!#2@t82P~t8!#…(
n51

`
1

n!

3@X i~t!•“ i1X j~t8!•“ j #
nvC~Ri j !,

~3.20!

where“i denotes“Ri
. ~In the following, a loop is indexed

either by a capitalI or by a smalli .! At large distances, the
loop potentialv~L i ,L j ! behaves as the Coulomb potential
between the ‘‘total charges’’ of the two loops, as if they were
point charges located atRi andRj , respectively. In the fol-
lowing, the ‘‘total charge’’ of a loopL i refers to the sum
piea i

of the charges of the correspondingpi quantum par-
ticles of speciesai and we use the argumentci instead ofL i
in the functions that involve only the positionRi and the
total chargepiea i

of the i th loop. For instance, the charge-
charge potential between loops reads

vcc~ci ,cj ![pipjvC~Ri j !. ~3.21!

The multipolar decomposition~3.20! of the potentialv can
be reorganized as the sum of a charge-charge potential
vcc(ci ,cj ), multipole-charge potentialsvmc~L i ,cj ! and
vcm~ci ,L j ! and a multipole-multipole potential
vmm~L i ,L j !,

v~L i ,L j !5vcc~ci ,cj !1vmc~L i ,cj !1vcm~ci ,L j !

1vmm~L i ,L j !, ~3.22!

with the following definitions.
~a! vmc~L i ,cj ! is the sum of the interactions between the

total charge of the loopL j , as if it were concentrated atRj ,
and all the multipolar moments of orderq ~with q>1! of a
charged filament that would have the shape of the loopL i

and a charge densitys i(r )[*0
pidt d„r2Vi(t)…,

vmc~L i ,cj ![pjE
0

pi
dt (

q51

`
1

q!
@X i~t!•“ i #

qvC~Ri j !

5velect~L i ,cj !2vcc~ci ,cj !, ~3.23!

wherevelect~L i ,cj ! is the classical electrostatic potential be-
tween a point chargecj and the charged closed line
Vi~t!5Ri1X i~t!,

velect~L i ,cj ![pjE
0

pi
dt vC@Vi~t!2Rj #

5pjE dr s i~r !vC~r2Rj !. ~3.24!

~b! The second term is similar to the first one, with the
indicesi and j interchanged,
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vcm~ci ,L j ![piE
0

pj
dt8(

q51

`
1

q!
@X j~t8!•“ j #

qvC~Ri j !

5velect~ci ,L j !2vcc~ci ,cj !. ~3.25!

~c! The last contributionvmm~L i ,L j ! is the sum of the
interactions between the multipolar moments of orderq
~q>1! of every infinitesimal line element of the curveVi
with parametert and the multipolar moments of orderq8
~q8>1! of the p infinitesimal line elements ofVj with pa-
rametert8 such thatt2P(t)5t82P~t8!,

vmm~L i ,L j !5E
0

pi
dtE

0

pj
dt8d„@t2P~t!#

2@t82P~t8!#…(
q51

`

(
q851

`
1

q!

1

q8!

3@X i~t!•“ i #
q@X j~t8!•“ j #

q8vC~Ri j !.

~3.26!

This part of the loop interaction has no classical interpreta-
tion because, in electrostatics, any infinitesimal part of a
charged line interacts with every infinitesimal line element of
another charged curve. Indeed, the electrostatic potential be-
tween classical loops reads

velect~L i ,L j !5E
0

pi
dtE

0

pj
dt8vC@Vi~t!2Vj~t8!#

5E drE dr 8s i~r !s j~r 8!vC~r2r 8!.

~3.27!

From the Taylor expansion of~3.27!, we derive a multipolar
decomposition ofvelect analogous to~3.22!,

velect~L i ,L j !5vcc~ci ,cj !1vmc~L i ,cj !1vcm~ci ,L j !

1velect
mm~L i ,L j !, ~3.28!

with

velect
mm~L i ,L j !5E

0

pi
dtE

0

pj
dt8(

q51

`

(
q851

`
1

q!

1

q8!

3@X i~t!•“ i #
q@X j~t8!•“ j #

q8vC~Ri j !.

~3.29!

The difference between the potentialsv and velect is just
v(L i ,L j )2velect(L i ,L j )5vmm(L i ,L j )2velect

mm(L i ,L j ).
As a final remark, we stress that the above decompositions
are independent from the particular form of the two-body
potential between the quantum point particles.

D. Loop distributions

The densityr~L![r~La,p! of loops of speciesa, sizep,
‘‘located’’ at x1 and with a shape ~$xl2x1%l52,...,p,
$jl%l51,...,p! is the average of the operator

r̂~L![r̂~a,p,$xl% l51,...,p , $j l% l51,...,p!

5(
I

da I ,a
dpI ,p)l51

p

d~xl
I2xl !)

l51

p

d~jl
I2jl !.

~3.30!

We notice that, in the case of fermions, since the sign of the
weight z~L! depends on the sizep of the loop according to
~3.6!, r~L! is expected not to be positive for everyp, as is
the case for noninteracting fermions~see Sec. IV B!. The
correlationr(2)T~La ,Lb! between the loopsLa andLb ,
with La5(aa ,pa ,$xl

a% l51,...,pa
, $jl

a% l51,...,pa
), is the trun-

cated average of the two-body distribution operator

r~2!T~La ,Lb!1r~La!r~Lb!

5K (
IÞJ

da I ,aa
daJ ,ab

dpI ,pa
dpJ ,pb)l51

pa

d~xl
I2xl

a!

3 )
l 851

pb

d~xl 8
J

2xl 8
b

!)
l51

pa

d~jl
I2jl

a! )
l 851

pb

d~jl 8
J

2jl 8
b

!L .
~3.31!

According to ~3.10! and ~3.11!, Jloop can be seen as a
functional ofz~L!, where each loopL I has a weightz~L I!.
Thus the distribution functions of the loops can be derived as
functional derivatives of the grand partition functionJloop
with respect toz~L!,

r~L!5z~L!
d~ ln J loop!

d„z~L!…
~3.32!

and, forLaÞLb ,

r~2!T~La ,Lb!5z~La!z~Lb!
d2~ ln J!

d„z~La!…d„z~Lb!…
.

~3.33!

Because of the noncommutativity of the operatorsr̂~r ! and
Ĥ, such functional relations do not exist in usual other for-
malisms describing a quantum system. They allow one to
build Mayer-like diagrams, as shown in Sec. VI.

IV. QUANTUM PARTICLE VERSUS EXCHANGE LOOP
DISTRIBUTIONS

A. Density and correlations

The density operatorr̂a~r ! ~2.5! for the quantum particles
of speciesa can be expressed as either a sum over the par-
ticle indicesi or a double sum over the loop indicesI and the
indices l of the particle variablesx l

I . The analog of~3.30!
reads

r̂a~r !5(
I

da I ,a(l51

pI

d~xl
I2r !. ~4.1!

A comparison of~3.30! and~4.1! gives the relation between
the particle- and loop-density operators
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r̂a~r !5 (
p51

` E )
l51

p

dxl(
l51

p

d~xl2r !E )
l51

p

D~jl !r̂~La,p!

5 (
p51

`

pE )
l52

p

dxlE )
l51

p

D~jl !r̂~La,p!ux15r . ~4.2!

The last equality in~4.2! is derived from the invariance of
r̂~La,p! under any cyclic permutation of thep positionsxl .
In the infinite volume, the average density of loops
r~La,p!5^r̂~La,p!& depends only onp21 independent po-
sitions xl and p Brownian bridgesjl , r~La,p!5ra,p~X!.
Thus the density of quantum particles can be deduced from
the density of loops by

ra
Q~r !5 (

p51

`

pE D~X!ra,p~X!, ~4.3!

with the notation of~3.19!.
In the same way, the two-body distribution operator is

written in terms of the loop indicesI as

(
iÞ j

da i ,aa
da j ,ab

d~r i2ra!d~r j2rb!

5daa ,ab(I da I ,aa (
lÞ l*

d~xl
I2ra!d~xl*

I
2rb!

1(
IÞJ

da I ,aa
daJ ,ab(l51

pI

d~xl
I2ra! (

l*51

pJ

d~xl*
J

2rb!.

~4.4!

The first term on the right-hand side of~4.4! comes from
particles that belong to the same loop, whereas the second
term is the contribution from particles that are in two differ-
ent loops. As a consequence, the correlation function of two
particles~2.6! can be written as the sum of the contributions
from configurations where the particles at the two considered
positions are either exchanged or not exchanged within the
same cycle,

raaab
~2!TQ~rab!5daa ,ab

raaaa
~2!TQuexch~rab!1raaab

~2!TQunonexch~rab!,
~4.5!

with

raa
~2!TQuexch~rab!5 (

p52

`

pE )
l51

p

dxlE )
l51

p

D~jl !r~La,p!

3d~x12ra! (
l*52

p

d~xl*2x12rab!

5 (
p52

`

pE D~X!ra,p~X!

3 (
l*52

p

dS rab2 (
l51

l*21

t l D ~4.6!

and

raaab
~2!TQunonexch~rab!5 (

p51

`

(
p851

`

pp8E )
l52

p

dxlE )
l51

p

D~jl !

3E )
l 852

p8

dxl 88 E )
l 851

p8

D~jl 8
8 !

3r~2!T~Laa ,p,L8ab ,p8!ux15ra ,x185rb

5 (
pa51

`

(
pb51

`

papbE D~Xa!E D~Xb!

3raa ,pa ;ab ,pb
~2!T ~rab ;Xa ,Xb!. ~4.7!

Indeed,r (2)T(Laa ,p,L8ab ,p8) is invariant under any cyclic
permutation of thep positionsxl or the p8 positionsxl 88 .
Moreover, in the thermodynamic limit, the bulk correlation
between two loopsLa andLb depends only onpa1pb21
independent positions andpa1pb Brownian bridges,
r (2)T(La ,Lb)5raa ,pa ;ab ,pb

(2)T (rab ;Xa ,Xb).

Equations~4.5! and ~4.6! imply that

E dr raa
~2!TQ~r !5 (

p51

`

p~p21!E D~X!ra,p~X!

1E dr raa
~2!TQunonexch~r !. ~4.8!

By using ~4.3!, ~4.5!, and the Orsntein-Zernicke relation
~2.10!, we get the identities

(
p51

`

p2E D~X!ra,p~X!5ra
Q1E dr raa

~2!TQuexch~r !

5
]ra

Q

]~bma!
U

b

2E dr raa
~2!TQunonexch~r ab!.

~4.9!

B. Noninteracting system

For an ideal gas, the contributions from the noninteracting
loops are factored in the grand partition function~3.11!

J0~b,$ma%,L!5expS E
L
dL z0~L! D . ~4.10!

Moreover, the internal energy~3.7! of free loops does not
depend on the Brownian paths, so that

E
L
dL z0~L!5(

a

ns

(
p51

`

za,p* E
L
)
l51

p

dxle
2bEb

0
~$xl %!)

l51

p

3E D~jl !. ~4.11!

The measureD~j! is normalized to*D~j!51. In order to
perform the integration over the variablesxl , we use the
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change of variables~3.18! t l5xl112xl ~with the convention
xp11[x1! and the Fourier representation of the Dirac distri-
bution

lim
L→`

1

L E
L
)
l51

p

dxle
2bEb

0
~$xl %!

5E )
l51

p

dt ldS (
l51

p

t l D)
l51

p

e2~1/2la
2

!tl
2

5E dk

~2p!3
@~2pla

2 !3/2e2la
2k2/2#p. ~4.12!

la
2k2/2 is equal tob times the kinetic energyea

0~k! of a free
particle with momentumk. According to the definition of
za,p* ~3.6!, limL→`@ln~J0!/L# involves the series(p51

` (1/

p)@hae
b@ma2ea

0(k)##p. This series is convergent for the wave
vectorsk such thatea

0~k!.ma and the value of the sum is
given by analytic continuation for allk’s. Thus we retrieve
the usual formula for the pressure~2.9! P0 of free particles in
an infinite volume

bP05 lim
L→`

1

L
ln J05 (

a51

ns

~2Sa11!E dk

~2p!3
~2ha!

3 ln~12hae
b@ma2ea

0
~k!#!. ~4.13!

The density of noninteracting loops, obtained from~3.32!
and ~4.10!, is equal to the loop fugacity, as in a classical
ideal gas of point particles,

r0~L!5z0~L!. ~4.14!

For fermions, the sign ofr0~L! depends onp, as is the case
for the sign ofza,p* ~3.6!. The density of free quantum par-
ticles is given by~4.2!

ra
0Q5 (

p51

`

pza,p* E )
l52

p

dxle
2bEb

0
~$xl %!E )

l51

p

D~jl !.

~4.15!

Since onlyza,p* depends onma in ~4.15! and ]za,p* /](bma)
5pza,p* , it can be checked, by comparing~4.11! and~4.15!,
thatra

0Q is directly deduced from the expression~4.13! of the
pressionP0 by the usual thermodynamic relation~2.8!

ra
0Q5

]~bP0!

]~bma!
5~2Sa11!E dk

~2p!3
na
0~k!. ~4.16!

na
0~k! is the occupation number of the state with quantum

numbersa andk,

na
0~k!5

eb@ma2ea
0

~k!#

12hae
b@ma2ea

0
~k!#

5
1

eb@ea
0

~k!2ma#2ha

.

~4.17!

We recall that, in fact, the integral in~4.16! is to be under-
stood as the limit of a sum over the discrete quantum wave
numbers. Indeed, in the case of bosons, when the tempera-
ture is lower than the Bose-condensation critical value,
ma50 and the density must be written as

ra
0Q5ra,G

0Q 1~2Sa11! lim
e→0

E
e,uku

dk

~2p!3
na
0~k;b,ma50!,

wherer a,G
0Q is the contribution from the ground state@35#.

The correlation function between the noninteracting loops
vanishes

r~2!T0~L,L8!50, ~4.18!

as can be checked by using~3.33! and ~4.10!. According to
~4.5!, the correlationr aa

(2)T0Q(r ab) between free quantum par-
ticles is reduced to the contribution from the density of non-
interacting loops of the same species. In other words, the
correlation in an ideal quantum gas contains only the purely
statistical exchange term

raa8
~2!T0Q

~r ab!5da,a8raa
~2!T0Quexch~r ab! ~4.19!

and, according to~4.6! and ~4.14!,

raa
~2!T0Q~r ab!5ha~2Sa11! (

p52

` S hae
bma

~2pla
2 !3/2

D p
3 (

l*52

p E )
l51

p

dt ldS rab2 (
l51

l*21

t l D
3dS rab1 (

l5 l*

p

t l D expS 2
1

2la
2 (
l51

p

t l
2D .
~4.20!

The Fourier transform representations of the Dirac distribu-
tions are used to perform the integration over the variables
t l , with the result

raa
~2!T0Q~r ab!5ha~2Sa11! È dk

~2p!3
e2 ik•rabE dk8

~2p!3

3e2 ik8•rab(
p52

`

(
l*52

p

@hae
@bma2~la

2 /2!k2## l*21

3@hae
@bma2~la

2 /2!k82##p2 l*11

5ha~2Sa11!S E dk

~2p!3
e2 ik•rab

3 (
q51

`

@hae
b@ma2ea

0
~k!##qD 2. ~4.21!
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The last equality in~4.21! is obtained by exchanging the
order of the summations overp and l * and changing
p2 l *11 intoq andl *21 intoq8. The sum of the series over
q is merely equal toha times the occupation numberna

0~k!
~4.17!. Eventually

raa
~2!T0Q~r ab!5ha~2Sa11!S E dk

~2p!3
e2 ik•rabna

0~k! D 2.
~4.22!

The integral in ~4.22! is the well-known off-diagonal
matrix element of the one-body density matrix for a non-
interacting gas. It is equal to lims→02Ga

0(rab ,s)
5*@dk/(2p)3#exp@2ik•rab#na

0(k), whereGa
0~rab ,s! is the

free single-particle Green’s function of the standard pertur-
bation many-body formalism@see~6.1! in Sec. VI#. As al-
ready mentioned previously about Eq.~4.16!, in the Bose-
condensation phase, the integral overk must be written as
ra,G
0Q 1 lime→0*e,uku••• .
Since the noninteracting loops are not correlated, accord-

ing to ~4.18!, the corresponding Ornstein-Zernicke relation
~4.9! in terms of the free loop density reads

(
p51

`

p2E D~X!ra,p
0 ~X!5

]ra
0Q

]~bma!
5

@ra
0Q#2xa,T

0

b
,

~4.23!

wherex a,T
0 is the isothermal compressibility of the quantum

ideal gas.

C. Linear response to an external charge

When an infinitesimal distribution of chargedq~r ! is
immersed into the system, the HamiltonianĤ $Na% in the

grand partition function ~2.3! is changed into Ĥ $Na%

1*dr 8dq(r 8)( iea i
vC( r̂ i2r 8), where r̂ i is the position op-

erator of thei th particle. The integrand involving the Brown-
ian pathsvi ,p( i ) in the Feynman-Kac formula~3.2! is multi-
plied by

expS 2bE dr 8dq~r 8!(
i
ea iE0

1

ds vC~vi ,p~ i !2r 8! D .
Subsequently,Jloop is changed intoJ loop

ext , where the Boltz-
mann factor of~3.11! is multiplied by exp[2bĥext] with

ĥext5E dr 8dq~r 8!E dL8ea8r̂~L8!

3E
0

p8
dt8v@V8~t8!2r 8#, ~4.24!

where r̂~L8! is given by ~3.30!. The induced density of
loopsr ind(L)[^r̂(L)&J

loop
ext 2^r̂(L)&J loop

can be derived by

the usual linear response theory for classical systems

r ind~L!52b@^r̂~L!ĥext&2^r̂~L!&^ĥext&#

52bE dr 8dq~r 8!E dL8ea8@^r̂~L!r̂~L8!&

2^r̂~L!&^r̂~L8!&#E
0

p8
dt8v@V8~t8!2r 8#.

~4.25!

According to the definitions ~3.30! and ~3.31!,
^r̂(L) r̂(L8)&2^r̂(L)& ^r̂(L8)&5dL,L8r(L)1r (2)T(L,
L8). By using the relation~4.2! between the particle-density
and the loop-density operators, the induced charge density in
the quantum system is found to read

(
a

eara
indQ~r !52bE dr 8dq~r 8!H (

a
ea
2 (
p51

`

pE D~X!ra,p~X!E
0

p

dt v@r1X~t!2r 8#

1(
a

ea(
a8

ea8E dR8(
p51

`

p (
p851

` E D~X!E D~X8!ra,p;a8,p8
~2!T

~r2R8,X,X8!

3E
0

p8
dt8v@R81X8~t8!2r 8#J . ~4.26!

In order to handle concise formulas, we will distinguish a functiong~r ! from its Fourier transform only by their arguments,
g~k![*dr exp~ik•r !g~r !. The Fourier transform of the induced charge density is

(
a

eara
indQ~k!52bdq~k!vC~k!H (

a
ea
2 (
p51

`

pE D~X!ra,p~X!E
0

p

dte2 ik•X~t!

1(
a

ea(
a8

ea8(
p51

`

p (
p851

` E D~X!E D~X8!ra,p;a8,p8
~2!T

~k,X,X8!E
0

p8
dt8e2 ik•X8~t8!J . ~4.27!
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Formula ~4.27! can be reexpressed in order to make the
charge-charge correlation function appear. Since, according
to ~3.12!, X„P~t!…5xP(t)112x1 and *0

1dt exp@ik•X„P~t!…#
51, we write

(
l*52

p

eik•~xl*2x1!5211E
0

p

dt eik•X„P~t!…. ~4.28!

Thus, according to~4.3!, ra,p~2X!5ra,p~X! and the Fourier
transform ofr aa

(2)TQuexch~r ! ~4.6! is found to read

raa
~2!TQuexch~k!52ra

Q1 (
p51

`

pE D~X!ra,p~X!

3E
0

p

dt e2 ik•X„P~t!…. ~4.29!

If k50, we retrieve the identity~4.9!. The charge-charge
structure factor of the quantum particles of the medium
~slightly improperly called charge-charge correlation in the
following! is defined as

CQ~r ![(
a

(
a8

eaea8@da,a8ra
Qd~r !1raa8

~2!TQ
~r !#

~4.30!

and its Fourier transform is given by~4.5! and ~4.29!

CQ~k!5(
a

ea
2 (
p51

`

pE D~X!ra,p~X!E
0

p

dt e2 ik•X„P~t!…

1(
a

ea(
a8

ea8(
p51

`

p (
p851

`

p8E D~X!E D~X8!

3ra,p;a8,p8
~2!T

~k,X,X8!. ~4.31!

Therefore, the induced charge density~4.27! is related to the
charge-charge correlation via

1

dq~k! (
a

eara
indQ~k!

52bvC~k!HCQ~k!1(
a

ea
2 (
p51

`

pE D~X!ra,p~X!

3E
0

p

dt@e2 ik•X~t!2e2 ik•X„P~t!…#

1(
a

ea(
a8

ea8(
p51

`

p (
p851

` E D~X!

3E D~X8!ra,p;a8,p8
~2!T

~k,X,X8!

3E
0

p8
dt8@e2 ik•X8~t8!21#J . ~4.32!

The small-k expansion of the induced charge density in-
volves only even powers ofuku because of rotational invari-
ance and the quantum correction term toCQ~k! inside the

curly brackets in~4.32! starts at the orderuku2. In this expan-
sion, the contributions fromp51 andp851 correspond to
Maxwell-Boltzmann terms; since X~t! reduces to
laj„t2P~t!… in these contributions, the rotational invariance
enforces them to be proportional to even powers of\ times
Feynman-Kac integrals, which also depend on\ but are not
completely canceled when\ goes to zero~because the par-
ticle in the loop withp51 is not involved in any exchange
cyclic permutation!. On the other hand, the exchange statis-
tics generate contributions that vanish exponentially when\
tends to zero because of the exchange partEb

0 ~3.14! of the
internal energy of a loop withp>2. @The factor exp~2bEb

0!
in the loop fugacity~3.5! survives in the loop density, after
renormalization of the long-ranged divergencies of the Cou-
lomb interactions, as shown in Sec. V.# For instance, at the
orderuku2, the second term in curly brackets in~4.32! is equal
to

2(
a
ea
2 (
p51

`

pE D~X!ra,p~X!E
0

p

dt lak•jP~t!11„t2P~t!…

3@k•X„P~t!…1 1
2lak•jP~t!11„t2P~t!…#. ~4.33!

If p51,X„P~t!…50 and the contribution from the loops with
p51 is proportional tola

2}\2 with a coefficient that remains
finite when\ goes to zero. On the other hand, the loops with
p>2 generate terms that may be proportional only to\ but
are exponentially canceled whenuku vanishes, as are all the
terms with p>2, because they involvera,p~X!. A similar
structure appears in the term of orderuku2 due to the loop
correlations in the correction toCQ~k!.

Usually, the induced charge density~4.32! is written in
terms of the quantum static response functionx(r )
[*0

`dt Cret
Q (r ,t), whereCret

Q (r ,t) is the quantum retarded
charge-charge correlation function in real timet, which in-
volves the average of the commutator of the charge density
operators. Then, the static linear response reads
(aeara

indQ(k)/dq(k)52bvC(k)Cret
Q (k,v50). This rela-

tion is valid at zero as well as finite temperature. At finite
temperature, the retarded charge-charge correlation function
Cret
Q (r ,t) is related to the time-ordered charge-charge corre-

lation function in imaginary timeCT
Q~r ,s!. @s is the dimen-

sionless real variable of Sec. III A~0<s<1! andCT
Q~r ,s! is a

periodic function ofs with period 1.# Indeed, by using the
Lehman representation@36#, it can be shown that the time
Fourier transforms of both functions~over t and s, respec-
tively! involve the same analytic functiong:Cret

Q (k,v)
5 limh→0g(k,v1 ih), whileCT~k,nn!5g~k,inn!, wheren is
a relative integer that indexes the discrete frequencies
nn52pn. Consequently, the linear response can be ex-
pressed as

1

dq~k! (
a

eara
indQ~k!52bvC~k!E

0

1

ds CT
Q~k,s!.

~4.34!

On the other hand, the quantum static charge-charge corre-
lation function is related to the quantum time-ordered
charge-charge correlations by@36#

CQ~k!5CT
Q~k,s50!. ~4.35!
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At a classical level, the linear response theory reads~4.25!

1

dq~k! (
a

eara
ind cl~k!52bvC~k!Ccl~k!, ~4.36!

whereCcl~r ! is defined by~4.30! with the classical values in
place of the quantum ones. The classical equation~4.36! can
be readily retrieved from the corresponding formula~4.32! of
the loop formalism, because, in the classical limit, the shape
X shrinks to zero and the correction terms inside the curly
brackets of~4.32! vanish.

D. Coulombic screening

Screening rules analogous to~1.2! and ~1.3! can be ex-
pressed in terms of the loop distributions via the linear re-
sponse theory. The total induced charge*dr(aeara

indQ(r ) is
finite and since the correction terms toCQ~k! in the linear
response equation~4.32! vanish whenk50, this implies that

E dr CQ~r !50. ~4.37!

Equation~4.37! is a consequence of~1.2!: the total charge of
the polarization cloud around the charge(aeara~r !dr con-
tained in an infinitesimal volumedr of the medium is exactly
opposite to this charge. The property~4.37! can also be de-
rived from the imaginary-time equations of motion, under
the assumption that the correlation functions have an
inverse-power asymptotic expansion starting as 1/r 3 at large
distances@11#. According to the definitions~4.5! and~4.30!,
the screening equation~4.37! implies that

(
a

ea
2Fra

Q1E dr raa
~2!TQUexch~r !G

52(
a

(
a8

eaea8E dr raa8
~2!TQunonexch~r !. ~4.38!

Charges that are not exchanged are expected to attract or
repel each other according to whether they have opposite
signs or not. Henceforth, in the polarization cloud around a
chargeea of the medium, the total charge of the part of the
cloud that is build by particles that are not exchanged with
ea , namely,(a8ea8*dr @raa8

(2)TQunonexch(r )/ra# has a sign op-
posite toea , so that, according to the identity~4.9!,

(
a

ea
2 (
p51

`

p2E D~X!ra,p~X!

5(
a

ea
2Fra

Q1E dr raa
~2!TQUexch~r !G

.0. ~4.39!

Equation ~4.39! is valid even in the case of fermions, for
which the sign ofra,p~X! is expected to depend onp. The
inequality ~4.39! will be used in Sec. V.

Moreover, since Coulomb systems in dimension 3 can be
assumed to be in a conductive phase, the total induced
charge in the bulk is expected to be exactly equal to the
opposite of the infinitesimal external charge*dr dq~r ! ~the

excess charge being confined near the boundaries of the sys-
tem!. According to~4.32!, the corresponding equation~1.3!
implies that the second moment of the quantum charge-
charge correlation function satisfies the equation

1

6 E dr r 2CQ~r !

52
1

4pb
2
1

6 H (
a

ea
2 (
p51

`

pE Dp~X!ra,p~X!

3E
0

p

dt$@X~t!#22@X„P~t!…#2%

1(
a

ea(
a8

ea8(
p51

`

p (
p851

`

3E drE D~X!E D~X8!ra,p;a8,p8
~2!T

~r ,X,X8!

3E
0

p8
dt8$@r1X8~t8!#22r2%J . ~4.40!

Equation~4.40! is the version of the screening sum rule~1.3!
written in the loop formalism. Usually~1.3! is written in
terms of the retarded charge-charge correlation function in
imaginary times,CT~r ,s!, as

1

6 E dr r 2E
0

1

ds CT~r ,s!52
1

4pb
. ~4.41!

This sum rule can also be derived from the equilibrium equa-
tion under the same assumptions as for~4.37! @11#. In the
classical limit, the shapeX shrinks to zero and~4.40! tends
to the well-known Stillinger-Lovett sum rule@10#

1

6 E dr r 2Ccl~r !52
1

4pb
. ~4.42!

In Fourier representation, this sum rule reads
limuku→0bvC(k)C

cl(k)51 and it can be derived by inserting
the classical linear response~4.36! in ~1.3!.

For the OCP, the charge density is proportional to the
particle density and the position of the mass center of mov-
ing particles is only subjected to the harmonic force due to
the charged background. Thus it can be shown exactly
@30,37# that the second moment of the quantum charge-
charge correlation does not obey the classical sum rule~4.42!
since it satisfies

1

6 E dr r 2COCP
Q ~r !52

1

4pb

b\vP

2
cothS b\vP

2 D ,
~4.43!

wherevP is the plasma frequencyvP5(4pre2/m)1/2.

4576 53F. CORNU



V. RESUMMATION OF THE COULOMB DIVERGENCIES
IN THE LOOP VIRIAL EXPANSIONS

A. Virial expansions for the classical gas of loops

The quantum particle-particle correlation has contribu-
tions from both the loop density and the loop correlations.
Since the classical loops interact through a two-body poten-
tial v~L i ,L j !, usual techniques of classical statistics can be
applied to the system of loops, which was done by Ginibre in
the case of short-range potentials@1,17,38#. The notion of
standard Mayer bonds, which were originally introduced for
point objects@14#, has already been generalized to extended
objects for the Coulomb potential@21,25# in formalisms
where the exchange effects were treated perturbatively. In
the present paper, we introduce Mayer bonds for the classical
extended exchange loops by setting

f ~L i ,L j !5e2b i j v~L i ,L j !21, ~5.1!

with b i j[bea i
ea j

. The usual virial diagrammatics can be
applied to the system of loops and we call ‘‘points’’ of the
diagrams the loop objectsL.

The present section can be summed up as follows. In Sec.
V A we introduce the virial diagrams for the loop-fugacity
expansion of the density of loops and for the loop-density
expansion of the Ursell function of loops. The loop-fugacity
expansion of the density of loops allows one to study the part
of the particle-particle correlation that comes from configu-
rations where the two particles considered are exchanged
within the same cycle; because of the strong connectivity of
the loop-density diagrams~the absence of articulation
points!, the loop-density expansion of the Ursell function is
more adequate than its loop-fugacity expansion to study the
large-distance behavior of the part of the quantum correla-
tions induced by the loop correlations. Every Mayer diagram
diverges because of the nonintegrability of the 1/r decay of
the loop potential at large distances. The exact resummation
process displayed by Meeron@2# for the classical Coulomb
gas is generalized to the system of loops. The resummation
scheme for the loop-fugacity expansion of the loop density is
displayed in Appendix B, while the analogous and simpler
resummation for the loop-density expansion of the Ursell-
function is performed in Sec. V B as follows. By using the
multipolar decomposition of the potential introduced in Sec.
III C, the initial Mayer bond is decomposed into auxiliary
bonds f̃ associated with auxiliary diagramsG̃. The f̃ bonds
describe, respectively, the charge-charge interaction (f cc),
the multipole-charge interactions~f mc and f cm!, the
multipole-multipole interaction (f mm), and the rest of thef
bond (f T). In order to resum the Coulomb divergencies in-
volving the total charges of the loops, theG̃ diagrams are
gathered into equivalence classes characterized by a proto-
type diagram, where the so-called Coulomb chains of
charge-charge bonds ending with either anf cc bond or an
f mc bond are suppressed. The definition of the prototype dia-
grams with several kinds ofF bonds together with the asso-
ciated topological rules ensures the existence of a one-to-one
correspondence between the partition of the auxiliary dia-
grams and the set of the prototype diagrams. The intermedi-
ate points of the Coulomb chains are integrated first and the
resulting resummation between two points of a prototype

diagram is thoroughly independent from the resummation
between the points of another pair. In Sec. V C the explicit
values of the resummed bondsF are calculated. The so-
calledFcc, Fmc, andFcm bonds decay exponentially at large
distances, whereas the fourth bondFR behaves as a kind of
dipole-dipole interaction: the charge-charge and multipole-
charge interaction are classically screened, but the multipole-
multipole interaction, which is typically quantum, induces
algebraic tails. The integrability of the resummed prototype
diagrams for the loop-fugacity as well as the loop-density
expansions is discussed in Appendix C. In the case of the
loop-fugacity expansion, the integrability is ensured by per-
forming first the integration over the shapes of the loops, and
it is discussed how the loop density decays faster than any
inverse power of the distance between two points in the loop.
Then the integrability of the diagrams in the loop-density
expansion of the Ursell function is derived from the connec-
tivity of the diagrams. In Sec. V D the part of the particle-
particle correlation arising directly from exchange effects
~i.e., the part that is derived from the loop density! is
bounded by a series, which is expected to decay faster than
any inverse power law, as the series corresponding to the
particle-particle correlation in a noninteracting system.

The loop-fugacity expansion of the density of loops has
the diagrammatic representation@13,14#

r~La!5z~La!(
G

1

SG
E )

n51

N

@dLnz~Ln!#F) f G
G
.

~5.2!

In ~5.2! the sum runs over all the unlabeled topologically
different connected diagramsG with one root pointLa
~which is not integrated over! and N internal points ~N
50,...,̀ !. Each pair of points inG is linked by at most onef
bond and every point has a weight equal to 1. [P f ]G is the
product of thef bonds in theG diagram andSG is its sym-
metry factor, i.e., the number of permutations of the internal
pointsLn that do not change this product. For brevity, we
have used the convention that, ifN is equal to 0, no
~1/SG!*P n51

N @dLn~Ln!#[P f ]G appears and the correspond-
ing contribution tor~La! reduces toz~La!.

The truncated two-loop distribution is related to the two-
body Ursell functionh~La ,Lb! of the loops via

r~2!T~La ,Lb!5r~La!r~Lb!h~La ,Lb!. ~5.3!

The topological structure of the virial diagrammatics implies
that the Ursell function has the simple loop-density expan-
sion

h~La ,Lb!5(
G

1

SG
E )

n51

N

@dLnr~Ln!#F) f G
G

.

~5.4!

In ~5.4! the sum runs over all the unlabeled topologically
different connected diagramsG with two root pointsLa and
Lb andN internal points~N50,...,̀ ! that are built as theG
diagrams, apart from the fact that aG diagram contains no
‘‘articulation’’ point. An articulation point is defined by the
fact that, if it is taken out of the diagram, then the latter is
split into two pieces, one of which at least is no longer linked
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to any root point. We mention that, ifN is equal to 0, no
*dLnr~Ln! appears and ~1/SG![P f ] G is reduced to
f ~La ,Lb!. The absence of articulation points is the only
difference between the topology of the diagrams in the den-
sity expansion and the topology of the corresponding dia-
grams in the fugacity expansion. The connectivity is ‘‘stron-
ger’’ in the first case and, subsequently, the loop-density
expansion is more adequate for the discussion of the large-
distance behavior of the Ursell function.

When the distanceRi j between the positions of the loops
goes to infinity, the pair potential~3.13! between the loops
decreases as the Coulombic potential 1/Ri j . Thenth term in
the Taylor expansion~3.20! of the potentialv~Ri j ,X i ,X j !
decreases as 1/Ri j

n11, so the dominant asymptotic behavior of
the Mayer bondf ~L i ,L j ! defined in~5.1! is

f cc~L i ,L j ![2b~piea i
!~pjea j

!vC~Ri j !52b i jv
cc~ci ,cj !,

~5.5!

with the notations of~3.21!. So the integrals corresponding
either to theG diagrams of the expansion~5.2! or to theG
diagrams of the expansion~5.4! diverge.

B. Topological principles of the resummation

These large-distance Coulomb divergencies are dealt with
by means of an exact partial resummation of auxiliary dia-
grams, according to a method introduced by Meeron in the
classical case@2#. The resummation scheme for the loop-
fugacity expansion of the density of loopsr~L! follows the
same lines as that for the loop-density expansion of the
Ursell function h~L,L8!. However, the topological prin-

ciples of the resummation are simpler in the loop-density
expansion than in the loop-fugacity expansion and the latter
is displayed in Appendix B. In order to exhibit the part of the
pair potential that is classically screened, we use the ‘‘mul-
tipolar’’ decomposition~3.22! of the loop potential. We split
the original bondf ~L i ,L j ! defined in~5.1! into the sum~see
Fig. 2!

f5 f T~L i ,L j !1 f cc~ci ,cj !1 f mc~L i ,cj !1 f cm~ci ,L j !

1 f mm~L i ,L j !. ~5.6!

The truncated bondf T

f T~L i ,L j ![e2b i j v~L i ,L j !211b i jv~L i ,L j ! ~5.7!

decreases only as@b(piea i
)(pjea j

)#2/(2Ri j
2 ), while the rest

of ~5.6! is inspired by the multipolar decomposition~3.22! of
v~L i ,L j ! rewritten as

2b i jv5 f cc1 f mc1 f cm1 f mm, ~5.8!

with f mc~L i ,cj ![2b i jv
mc~L i ,cj !, f cm(ci ,L j !

[2b i jv
cm~ci ,L j !, and f mm~L i ,L j ![2b i jv

mm~L i ,L j !.
With the decomposition of the bondf into the sum~5.6!,
h~La ,Lb! can be expressed by the formula~5.4!, where
now theG diagrams are replaced byG̃ diagrams made withf̃
bonds that are equal either tof T , f

cc, f mc, f cm, or f mm,

h~La ,Lb!5(
G̃

1

SG̃
E )

n51

N

@dLnr~Ln!#F) f̃ G
G̃

.

~5.9!

TheG and G̃ diagrams have the same topological properties
because thef bond is just the sum of the variousf̃ bonds. An
example of aG̃ diagram is shown in Fig. 3~a!.

Our purpose is to resum all the Coulombic divergencies
involving the total charge of a loopLn , i.e., the total charge
of the correspondingpn quantum particles. In order to
achieve this aim, we first integrate over all the intermediate

FIG. 2. Diagrammatic representation of the decomposition~5.6!
of an f bond~between two pointsL i andL j denoted by two white
circles! into five auxiliary f̃ bonds. A dotted line is anf T bond, a
solid line an f cc bond, a solid line betweenL i andL j with one
arrow pointing to the pointL i a bondf

mc~L i ,L j !, and a solid line
with arrows at both ends af mm bond.

FIG. 3. ~a! Typical auxiliaryG̃ diagram and~b! the prototypeP diagram to whichG̃ contributes by the resummation process of Sec. V B.
The white circles are root points and the black circles are the internal points that are integrated over with the measure*d Lr~L! in ~5.9!.
The notations for the bonds inG̃ are those of Fig. 2. In the correspondingP diagram, the Coulomb pointsC k

$ i j % defined in Sec. V B are
suppressed and the pointsP i that are left over are linked byF bonds. AnFcc bond is represented by a wavy line, a bondFmc~P i ,P j ! by
a wavy line with an arrow pointing toP i , and anFR bond is denoted by a solid line with a superscriptFR .
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points of the convolutionsf cc* f
cc, f mc

* f
cc, f cc* f

cm, and
f mc

* f
cm. In the following, these intermediate points are

called ‘‘~convolution! Coulomb points’’C k . The convolu-
tion chains that contain only intermediate Coulomb points
are referred to as ‘‘Coulomb chains’’; a Coulomb chain with-
out any internal point is either anf cc, f mc, f cm, or f mm bond.
First, we notice that we can make a partition of theG̃ dia-
grams such that all the diagrams in a given class lead to the
same so-called prototypeP diagram, when all the Coulomb
points are supressed~in the sense that they are already inte-
grated over!. An example is given in Fig. 3~b!. There is at
most one link between any two points that are left over in a
P diagram through this process. As shown in Ref.@25#, mere
combinatory and topological considerations lead to the iden-
tity

h~La ,Lb!5(
P

1

SP
E )

m51

M

@dPmr~Pm!#F) F G
P

,

~5.10!

with the definition

F~P i ,P j !5(
G̃i j

1

SG̃ i j

E )
k51

ni j

@dC k
$ i j %r~C k

$ i j %!#F) f̃ G
G̃ i j

.

~5.11!

In ~5.11! the sum runs over all the unlabeledG̃ i j diagrams
that are built between the two root pointsP i and P j by
adding Coulomb chains made withni j Coulomb pointsC k

$ i j %,
according to some prescriptions explained below.

The identity~5.10! is valid only if the definition of theP
diagrams is such that there does exist a one-to-one corre-
spondence between the partition of theG̃ diagrams and the
set of theP diagrams. In fact, in the process that associates a
given G̃ diagram with aP diagram, a pointLn that is con-
nected to at least three other points inG̃ is kept as a pointPm

in P, whereas an intermediate point in a convolution of
bonds inG̃ disappears if and only if it is a Coulomb point.
Thus we have to introduce various kinds ofF bonds that can
be distinguished from one another by some corresponding
excluded-convolution rules. We call theF bond that links
two pointsP i andP j of a P diagram

~i! a ‘‘charge-charge’’ bondFcc~P i ,P j ! if P i andP j are
linked in theG̃ diagram by a single chain off cc bonds@see
Fig. 4~a!#,

~ii ! a ‘‘multipole-charge’’ bondFmc~P i ,P j ! @a ‘‘charge-
multipole’’ bond Fcm~P i ,P j !# if the points are linked in
the G̃ diagram by a single chain made with anf mc bond
starting atP i convoluted with a chain off

cc bonds ending at
P j @a single chain off cc bonds starting atL i convoluted
with an f cm bond ending atP j # @see Fig. 4~b!#, and

~iii ! a ‘‘dressed’’FR bond in other cases@see Fig. 4~c!#.
Then the excluded-convolution rules that distinguish theF
bonds read as follows: in theP diagram there cannot be any
convolutionFcc

*F
cc, Fmc

*F
cc, Fcc

*F
cm, or Fmc

*F
cm. This

rule is exemplified in Fig. 3. We stress that the resummations
of Coulomb chains between the various pairs of points
$P i ,P j % are thoroughly independent from one another.
Hence the topological structure of the MayerG̃ diagrams is
preserved through the resummation process, apart from the
above extra excluded-convolution rules, which avoid double
counting in the correspondence betweenG̃ andP diagrams.

C. Explicit values of the resummed bonds

1. The screened charge-charge bond Fcc

According to the definition of the preceding subsection,

Fcc~P i ,P j !5 f cc~P i ,P j !

1 (
N51

` E F )
k51

N

dC k
$ i j %r~C k

$ i j %!G f cc~P i ,C 1
$ i j %!

3 f cc~C 1
$ i j % ,C 2

$ i j %!••• f cc~C N
$ i j % ,P j !. ~5.12!

Since thef cc bonds~5.5! do not depend on the shapes of the
loops, the integration over the internal degrees of freedom
~a,p,X! of theN intermediate Coulomb loopsC k

$ i j % in a con-
volution chain of N11 f cc bonds factors out as
@(a51

ns (p51
` *D(X)ea

2p2ra,p(X)#
N.

The contributionFcc from the convolution chains off cc

bonds with all possible lengths~i.e., all possible numbersN
of intermediate points! is readily calculated by a Fourier
transform over the positionsRi of the loops, as in the dia-
grammatic version of the Debye-Hu¨ckel theory@15#. With
the notationg~k![*dr exp~ik•r !g~r !,

FIG. 4. Diagrammatic representation of the resummedF bonds,
according to the definitions of Sec. V B. With the notations of Fig.
3, ~a! corresponds to anFcc bond,~b! to anFmc bond, and~c! to an
FR bond.
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E dRi j e
ik•Ri j Fcc~L i ,L j !

52b~piea i
!~pjea j

!H vC~k!1 (
N51

` S 2b (
a51

ns

ea
2 (
p51

`

p2

3E D~X!ra,p~X!D N@vC~k!#NJ
52b i j pipj

4p

k21k2 , ~5.13!

where k254pb(aea
2( p51

` p2*D~X!ra,p~X!. According to
~4.9!,

k254pb(
a

ea
2Fra

Q1E dr raa
~2!TQU

exch
~r !G . ~5.14!

k2 is positive and finite, according to~4.39!. Thusk is real
and finite and the resummed charge-charge bondFcc reads

Fcc~ci ,cj !52b i j pipjf~r i j !52b i jf
cc~ci ,cj !,

~5.15!

wherefcc(ci ,cj )5pipjf(r i j ) and f is a potential in the
manner of Debye

f~r !5
e2kr

r
. ~5.16!

In the fermionic quantum regime at high density, the kinetic
energy becomes far larger than the interaction energy and the
correlations due to the interactions become negligible;
then, according to~4.9!, r a

Q1*dr r a,a
(2)TQuexch~r ! becomes

equal to ]r a
0Q/]~bma! and the value~5.14! of k2 tends

to the random-phase approximation~RPA! expression
kRPA
2 54pb(aea

2]r a
0Q/]~bma!. In the classical limit,

r aa
(2)TQuexch vanishes and we retrieve the inverse Debye-

Hückel screening lengthkDH5@4pb(aea
2ra#1/2. A more de-

tailed comparison with the screening lengths of the usual
mean-field theories and of the RPA theory will be given in
Sec. V of paper II.

2. The screened multipole-charge bond Fmc

The only difference between anFmc bond and anFcc

bond is that there is an end bondf mc ~5.8! in place of a bond
f cc starting at pointP i . By means of the relation

@~X i•“ i !
qf cc#* f cc* •••* f cc5~X i•“ i !

q@ f cc* f cc* •••* f cc#,
~5.17!

the calculation of theFmc bond can be deduced directly from
that ofFcc. The result is

Fmc~L i ,cj !52b i j pjE
0

pi
dt (

q51

`
1

q!
@X i~t!•“ i #

qf~Ri j !

52b i j @felect~L i ,cj !2fcc~ci ,cj !#, ~5.18!

wherefelect~L i ,cj ! is the electrostatic ‘‘Debye-Hu¨ckel’’ po-
tential between a point chargepj and a charged curveVi

with a shapeX i and a charge densitys i(r )5*0
pidt d„r

2Vi(t)… @see~3.23!#,

felect~L i ,cj !5pjE
0

pi
dt f@Vi~t!2Rj #.

In a similar way, we obtain

Fcm~ci ,L j !52b i j @felect~ci ,L j !2fcc~ci ,cj !#.
~5.19!

3. The screened dressed bond FR

FR~P i ,P j ! is the sum of all the subdiagramsG̃i j that ap-
pear in~5.11! and are not included inFcc, Fmc, or Fcm be-
cause they can be convoluted with any other subdiagramG̃ki
or G̃j l @see Fig. 4~c!#. FR can be viewed as the sum of two
kinds of contributions. The first one involves the single
bondsf T andF

mm, whereFmm denotes the sum of the single
chains with all possible lengths in which anf mc bond starting
atP i is convoluted with a possible chain off

cc bonds that is
itself convoluted with anf cm bond ending atP j ~see Fig. 5!.
The second kind of contribution corresponds to multiple
chains. According to the definition~5.9! of the G̃ diagrams,
there is at most onef̃ bond between two points of those
diagrams and we have to introduce the notion of ‘‘genuine’’
Coulomb chain, i.e., a Coulomb chain that contains at least
one intermediate Coulomb point. Then the multiple chains
that contribute toFR can be expressed either as the product
of one among the fivef̃ bonds withn genuine Coulomb
chains with n>1 or the product ofn genuine Coulomb
chains withn>2. As explicitly recalled in Ref.@25#, the
symmetry factors of the products of similar chains are such
that, when the products ofn genuine Coulomb chains are
summed over all possible chain lengths, the result is merely
equal to~2bi jcchain!

n/n!, where2bi jcchain denotes the sum
of the genuine Coulomb chains with all possible lengths.
Eventually, sincef is the sum of the variousf̃ , FR @see Fig.
4~c!# can be written as

FR5 f T1Fmm1 f @e2b i jcchain21#

1@e2b i jcchain211b i jcchain#. ~5.20!

According to the relation~3.22! together with the definitions
of Fcc, Fmc, Fcm, andFmm, the value ofcchain can be de-
duced from the relation

2b i j @v1cchain#5Fcc1Fmc1Fcm1Fmm. ~5.21!

By using this relation together with the definitions~5.1! and
~5.7!, ~5.20! can be rewritten as

FIG. 5. Diagrammatic representation of theFmmbond defined in
Sec. V C, which is just an auxiliary object in the calculation of the
FR bond.
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FR5eF
cc1Fmc1Fcm1Fmm

212Fcc2Fmc2Fcm.
~5.22!

Only the calculation of the explicit value ofFmm is left to be
performed.

Fmm is the sum that involves, on one hand, the basic bond
f mm~P i ,P j !, wheret2P~t! must be equal tot82P~t8!, and,
on the other hand, the genuine Coulomb chains in which an
f mc bond with a parametert starts atP i and anf cm bond
with any other parametert8 ends atP i . According to the
identity

@~X i•“ i !
qf cc#* f cc* •••* f cc* @~X j•“ j !

q8 f cc#

5~X i•“ i !
q~X j•“ j !

q8@ f cc* f cc* •••* f cc* f cc#,

~5.23!

the value ofFmm is calculated as that ofFcc, with two bonds
f cm ~5.8! at the end points,

Fmm52b i j E
0

pi
dtE

0

pj
dt8(

q51

`

(
q851

`
1

q!

1

q8!

3@X i~t!•“ i #
q@X j~t8!•“ j #

q8

3$d„@t2P~t!#2@t82P~t8!#…vC~Ri j !

1@f~Ri j !2vC~Ri j !#%. ~5.24!

According to~3.22! and ~3.28!, the pure Coulombic part in
Fmm can be written as

W~L i ,L j !52b i j @v~L i ,L j !2velect~L i ,L j !#

52b i j E
0

pi
dtE

0

pj
dt8

3$d„@t i2P~t i !#2@t i82P~t i8!#…21%

3vC@Vi~t!2Vi~t8!#, ~5.25!

where velect ~L i ,L j ! is the electrostatic potential between
two classical loops defined in~3.27!. The corresponding
screened Debye potential is

felect~L i ,L j !5E
0

pi
dtE

0

pj
dt8f@Vi~t!2Vj~t8!#

~5.26!

and, by using~5.15!, ~5.18!, and~5.19!, the Debye part in the
expression~5.24! of Fmm can be rewritten in terms of this
potential as

2b i jfelect~L i ,L j !2Fcc~ci ,cj !2Fmc~L i ,cj !

2Fcm~ci ,L j !. ~5.27!

Eventually, by collecting~5.25! and ~5.27!, we get the rela-
tion

Fcc~ci ,cj !1Fmc~L i ,cj !1Fcm~ci ,L j !1Fmm~L i ,L j !

52b i j @v~L i ,L j !2velect~L i ,L j !1felect~L i ,L j !#.

~5.28!

We notice that the value ofcchain is derived by comparison
with ~5.21!,

cchain5felect2velect, ~5.29!

and that it vanishes when the density goes to zero.
The explicit value ofFR is derived from~5.22! and~5.28!,

FR5e2b i j @v1felect2velect#212Fcc2Fmc2Fcm.
~5.30!

The dressed bondFR depends on the density only through
the inverse lengthk. Sincef, and consequentlyfelect, de-
creases exponentially at large distances,v1felect2velect has
an algebraic tail originating fromW52bi j (v2velect!. Thus,
contrarily to the otherF bonds,FR decreases algebraically at
large distances as

FR~L i ,L j ! ;
Ri j→`

eW~L i ,L j !21. ~5.31!

This algebraic behavior starts with a 1/r 3 tail and its inverse
power-law expansion is derived from the decomposition

W5 (
g>3

Wg~L i ,L j !, ~5.32!

whereWg decreases as 1/Ri j
g whenRi j goes to infinity,

Wg~L i ,L j ![2b i j E
0

pi
dtE

0

pj
dt8$d„@t2P~t!#

2@t82P~t8!#…21%
1

~g21!!

3@X i~t!•“ i1X j~t8!•“ j #
g21vC~Ri j !.

~5.33!

The leading termW3 reads

W3~L i ,L j ![b i j E
0

pi
dtE

0

pj
dt8

3$d„@t2P~t!#2@t82P~t8!#…21%

3@X i~t!•“Ri j
#@X j~t8!•“Ri j

#vC~Ri j !.

~5.34!

Wg involves the shapesX i andX j of L i andL j simulta-
neously, because of the property

E
0

pi
dtE

0

pj
dt8$d„@t2P~t!#2@t82P~t8!#…21%g~t!50.

~5.35!

Our procedure is analogous to the resummations of the
Coulomb divergencies that are done in the density-expansion
scheme of Ref.@25# for a multicomponent plasma where the
exchange effects are treated perturbatively. The latter formal-
ism leads to theexactcalculation of the equation of state up
to order52 in the densities. These calculations are valid in the
internal shells of the sun, where the density is low enough
and the temperature is sufficiently high for the sizes of the
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Brownian bridges to be lower than the interparticle distance
~weak degeneracy!. In this scheme, some resummed bonds
decrease exponentially as either the Debye-Hu¨ckel potential
~classical collective screening! or its gradient~‘‘diffraction’’
effects of quantum dynamics! and the other bonds decrease
as 1/r 3 and involve the description of the quantum two-body
bound states. The topological definitions of the resummed
bonds are not the same as in the present paper; they are not
convenient for the study of the large-distance decay of the
correlations because they only exhibit the exponential
screening of the charge-charge and charge-dipole interaction,
whereas, in fact, every multipole-charge interaction is expo-
nentially screened, as in the classical regime.~Moreover, the
exchange effects are not taken into account systematically in
this formalism.!

In the classical limit, our formalism leads to the resum-
mation scheme with reexponentiation that Meeron developed
for the density expansion of the correlations in ionic solu-
tions @2#. As shown in Sec. III B, when\ goes zero, the
loops are reduced to points that interact through the potential
ea i

ea j
vC(r i j ). The screening length tends to the classical De-

bye lengthkDH
21 . The parametert does not appear in the

interaction,velect coincides withv, andW52bi j (v2velect!
vanishes. Thus Fcm and Fmc do not exist, while
Fccu\5052bi jfDH(r i j ) and FRu\505exp@2bi jfDH(r i j )#21
1bi jfDH(r i j ) coincides with the resummed bars introduced
by Meeron. The topological definition of the resummed dia-
grams is the same as in the present formalism.

D. Decay of the exchange part of the correlations

As shown in Appendix B, a resummation in the loop-
fugacity expansion~5.2! of r~La! can be performed along a
process similar to that in Sec. V B for the loop-density ex-
pansion of the Ursell function. The main difference comes
from the existence of articulation points in theG diagrams
involved in formula ~5.2!. This difference has two conse-
quences. First, there may be articulation points also in the
prototype diagramsP obtained after the resummation. Sec-
ond, convolution rings that are attached to an articulation
point and in which all the intermediate points are Coulomb
points disappear when all these points are integrated over. In
the following, these rings are called ‘‘Coulomb rings.’’ Sub-
sequently, the pointsP that are left over have a weightw~P !
different from the valuez~P ! that they had in theG̃ dia-
grams. The analog of the resummation formula~5.10! reads

r~La!5w~La!(
P

1

SP
E )

m51

M

@dPmw~Pm!#F) FzG
P
.

~5.36!

The sum runs over all the unlabeled topologically different
connected diagramsP with one root pointLa and in which
two points are linked by at most oneFz bond. Since there
must be a one-to-one correspondence betweenP diagrams
and a partition of theG diagrams into equivalence classes,
excluded-convolution rules appear and, at the same time, the
weight w~Pm! of every internal pointPm , depends on the
role of Pm in the topology of the diagramP. As shown in
Appendix B, the excluded-convolution rules for theP dia-
grams are simply expressed by introducing two values for

the weightw ~except in the case ofLa , which has the same
role in all P diagrams! and are analogous to those of Sec.
V B. The formula~5.36! is similar to Eq.~5.3! in Ref. @25#.
In order to get finite weights, the auxiliary decomposition of
f into f̃ bonds is slightly different from~5.6! and fiveFz
bonds appear. TheFz bonds decay either exponentially, with
an inverse screening lengthkz , or algebraically, as
exp@W#21. The expression ofkz is the same as that ofk,
with za,p ~X! in place ofra,p ~X!, and, in the bosonic case, it
is lower than the RPA value. After resummation of the
charge-charge Coulomb divergencies, according to~B9!,
~B11!, and ~B12!, the fugacity of the root pointLa is re-
placed by a weightw~La!, which is lower than the loop
fugacity corresponding to a quantum system where the inter-
action between particles isfz(r )5exp(2kzr )/r instead of
vC(r ) and the chemical potential of a particle is equal toma
plus the self-energy of a point charge creating a potentialfz ,

uw~La!u,uzaa ,pa
* ~maa

1 1
2eaa

2 kz!ue2E
b

intfz~$tl
a%!. ~5.37!

Eventually, according to~3.16!, the weight of the root point
La in aP diagram is bounded by the fugacity of a noninter-
acting loop with a chemical potential that includes the self-
energy of a point particle creating a Debye-Hu¨ckel potential
exp(2kzr )/r ,

uw~La!u,uzaa ,pa
* ~maa

1 1
2eaa

2 kz!ue2Eb
0

~$tl
a%!. ~5.38!

The integrability of the resummed diagrams in both the
loop-fugacity expansion of the loop-density and the loop-
density expansion of the loop Ursell function is studied in
Appendix C. The two values for the weight of internal points
are shown to be bounded by a constant times the Gaussian
exp@2Eb

0~$t l%!#, according to~3.16! and~B13!, and the mea-
sure over the Brownian bridges$jl%l51,...,p is also Gaussian.
Subsequently, the integrals corresponding to the resummedP
diagrams are shown to be conditionally convergent at large
distances if the integration over the shapesX of the internal
loops are performed before the integration over the relative
positions of the loops.~This kind of procedure also operates
in the case of classical two-dimensional plasmas without any
resummation@39#.! Then, the nonabsolutely integrable part
of the asymptotic behavior of the algebraic bond disappears
partially because of rotational invariance arguments and the
remaining contribution from dipole-dipole-like interactions
is proportional to the short-ranged Laplacian of the Coulomb
potential. The spurious short-distance singularities due to the
auxiliary decomposition off into f̃ bonds disappear when
the diagrams are suitably collected together@40,41#. As ar-
gued in Appendix C, the loop densityr~P ! is expected to
decay faster than any inverse power law of the extension of
the shapeX, so that the integrability of theP diagrams in the
loop-density expansion of the Ursell function is readily de-
rived from the connectivity of those diagrams.

Since the average of the loop density over the Brownian
bridges has a fast decay@see ~C7!# when the distance be-
tween two points in the loop becomes very large, the part
~4.6! of the particle-particle correlation that comes from ex-
change effects is bounded, according to~3.19! by
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uraaaa
~2!TQuexch~r ab!u, (

pa52

1`

paE F)
l51

pa

dt l
aG (

l*52

pa

3dS (
l51

l*21

t l
a2rabD dS (

l5 l*

pa

t l
a1rabD

3uzaa ,pa
* ~maa

1 1
2eaa

2 kz!u

3exp(

2
1

2laa
2 (

l51

pa

@ t l
a#2)E F)

l51

p

D~j l
a!G

3U(
P

I P~La!U. ~5.39!

In Appendix C we argue that

expF2~1/2laa
2 !(

l51

pa

@ t l
a#2G E F)

l51

p

D~j l
a!GU(

P
I P~La!U

decays faster than any inverse power law of$t l
a% l51,...,pa

. At
this point, we may only conjecture that the integration over
the positions ofpa22 particles and the summation over the
sizepa of the loopLa preserves this fast decay.

To exemplify our discussion, we return to the noninteract-
ing case and we mention a few results about the large-
distance behavior of the correlationr aa

(2)T0Q ~4.22! in a non-
interacting system. For bosons in the noncondensated phase
~ma,0! and for fermions~ha511!, na

0~k! is infinitely dif-
ferentiable in k at finite temperature, its inverse Fourier
transform decays faster than any inverse power ofr ab , and
so does the correlationr aa

(2)T0Q. However, the integral overk
in ~4.22! can be written as a series of Gaussians with increas-
ing ranges and it is not obvious that the sum of the series
eventually has an exponential falloff.

For instance, for bosons at any temperature larger than the
Bose-condensation critical value, the analysis in the complex
plane of uku shows that the leading term in the asymptotic
behavior of the correlationr aa

(2)T0Q ~4.22! decays exponen-
tially ~without any oscillating factor! over a length scale
@2ka* #21, whereka* is defined in a similar way to the Fermi
momentum for fermions\2ka*

2/2ma5umau. On the other
hand, the integral overk in haG a

0(r ab) may be written as a
series of Gaussians

E dk

~2p!3
eik•rab(

q51

`

~hae
bma!qe2q~la

2k2/2!

5 (
q51

`

~hae
bma!qS 1

2pqla
2 D 3/2e2~1/2qla

2
!r ab
2
. ~5.40!

This series is convergent for any givenr ab because
exp~bma!,1. The range of the Gaussians increases withq
and the large-distance behavior of the sum of the series has a
leading term that decays only exponentially. Under the as-
sumption that the same mechanism takes place for the upper
bound in ~5.39!, the latter inequality ensures that
raaaa
(2)TQuexch(r ab) is a rapidly decreasing function ofr ab .

As a final remark, we stress that this fast decay might
disappear at strictly zero temperature. For instance, in a ideal
gas of fermions at zero temperature,na

0~k! is a ~nonanalytic!
step function and the correlation function~4.22! decays al-
gebraically with an oscillating factor that has a phase
2kF,ar ab , where kF,a is the Fermi momentum
\2k F,a

2 /2ma5ma . However, at any nonzero temperature,
however small it is, the large-distance behavior of the
particle-particle correlation is given by the poles ofna

0~k! ~in
the complex plane of the variableuku! that have the smallest
imaginary part and the oscillations are damped by an expo-
nential factor over a distanceb\2kF,a/2pma . This difference
in the analyticity properties of the occupation number when
the temperature is increased from zero to a finite value also
generates the Friedel oscillations in the large-distance behav-
ior of the one-component plasma density around a test
charge at zero temperature in the RPA model, and its damp-
ing, as soon as the temperature is nonzero~see p. 179 in Ref.
@36# and references cited therein!.

VI. COMPARISON WITH THE STANDARD
PERTURBATION FORMALISM

A. General structures of the diagrams

At finite temperature, as recalled in Sec. IV C, the quan-
tum static structure factor Saa8

Q (r )[raa8
(2)TQ(r )

1da,a8ra
Qd(r ) can be calculated as the opposite of the time-

ordered density-density correlation at equal times@36# and
the induced charge density in the presence of an infinitesimal
external charge can be related through the linear response
theory ~4.34! to the integral of the time-ordered charge-
charge correlation functionCT~r ,s! over the times.

In the standard many-body perturbation theory, with the
normalizations of Ref.@21#, the time-ordered density-density
correlation in imaginary time is equal to the opposite of the
total ‘‘polarization’’ L~r ,s! @36#. The usual notationL for
the polarization is not to be confused with the notationP for
the prototype diagrams of Sec. V. The total polarization is
the sum of all the connected Feynman-like graphs in which
the points~r ,s! and ~0,0! are linked by loops of free propa-
gatorsGa

0~r ,s12s2! joined by interaction linesUaa8
0 (r ,s18

2s28)52beaea8vC(r )d(s182s28), according to some pre-
scribed rules@42#

Ga
0~r ,s!5E dk

~2p!3
eik•res~bma2la

2k2/2!@na
02u~s!#,

~6.1!

whereu(s) is the Heaviside function. The graphs are conve-
niently calculated by Fourier transform over both the posi-
tion and time variables. For brevity, we use the notation
L~k,n![L~k,nn52pn! in the following. The total polariza-
tion L can be calculated in terms of a more basic object of
the perturbation theory, the ‘‘proper’’ polarizationL* ,
which is the sum of all the polarization graphs that are not
split into two pieces when one interaction line is suppressed.
According to the topological definition ofL* , L is the sum
of all the chains built with proper polarization graphs linked
by interaction lines,
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Laa8~k,n!5
Laa8
* ~k,n!

12bvC~k!(
a,a8

eaea8Laa8
* ~k,n!

. ~6.2!

The definition of the proper polarization is related to that of
the ‘‘effective’’ potential Uaa8

eff (k,n): Uaa8
eff (k,n) is the

sum of all the chain Feynman diagrams built with interaction
lines linked by ‘‘proper polarization’’ graphs,

Uaa8
eff

~k,n!5
beaea8vC~k!

12bvC~k! (
a,a8

eaea8Laa8
* ~k,n!

. ~6.3!

Equation~6.2! can be rewritten as

Laa8~k,n!5Laa8
* ~k,n!

1 (
a1 ,a18

Laa1
* ~k,n!Ua1a

18
eff

~k,n!La
18a8
* ~k,n!.

~6.4!

The quantum static structure factor, which is given by a
relation similar to~4.35!, is related to the polarization graphs
via

Saa8
Q

~k!5raa8
~2!TQ

~k!1da,a8ra
Q52 (

n52`

1`

Laa8~k,n!.

~6.5!

According to~4.34!, the static induced charge density in the
presence of an external charge distributiondq~r ! is related to
the zero-frequency component of the polarization

(
a

eara
ind Q~k!

dq~k!
5bvC~k! (

a,a8
eaea8Laa8~k,n50!

5

4pb (
a,a8

eaea8Laa8
* ~k,n50!

k224pb (
a,a8

eaea8Laa8
* ~k,n50!

.

~6.6!

The latter equation ensures that, if the small-k expansion of
L* ~k,n50! starts with a power ofuku lower than 2, then
(aeara

ind(k50)52*dr dq(r ). The total potentialVtot in
the bulk in the presence of the external chargedq~r ! is re-
lated to the induced charge density by the Poisson equation

DVtot~r !524pFdq~r !1(
a

eara
ind Q~r !G . ~6.7!

Therefore, according to the linear response equation~6.6!
and ~6.3!, Vtot~k! is proportional to the zero-frequency com-
ponent of the effective potential

Vtot~k!

dq~k!
5

1

beaea8
Uaa8
eff

~k,n50!

5
4p

k224pb (
a,a8

eaea8Laa8
* ~k,n50!

. ~6.8!

The correlation function and the induced charge density
can also be written in terms of both the effective potential
and the proper polarization by using the relation~6.4!. For
instance, in space and time representation, the relation~6.4!
allows one to rewrite~6.5! as

raa8
~2!TQ

~r !1da,a8rad~r !52Laa8
* ~r ,s50!2E dr1E dr18E

0

1

ds1E
0

1

ds18(
a1

(
a18

Laa1
* ~r1 ,s1!

3Ua1a
18

eff
~r1r182r1 ,s182s1!La

18a8
* ~2r18 ,2s18!. ~6.9!

In the noninteracting case,~6.9! becomesr aa
(2)T0Q~r !1ra

0d~r !52La
0~r ,s50! with La

0~r ,s!52ha~2Sa11!Ga
0~r ,s!Ga

0~2r ,2s!
and, according to~6.1!, the result~4.22! is retrieved. From a formal point of view, the analog of the Dyson-like equation~6.9!
is Eq. ~4.5!, written as

raa8
~2!TQ

~r !1da,a8rad~r !5da,a8H rad~r !1 (
p52

`

pE D~X!ra,p~X! (
l*52

p

dS r2 (
l51

l*21

t l D J
1 (

p51

`

p (
p851

`

p8E D~X!E D~X8!ra,p~X!ha,p;a8,p8~r ,X,X8!ra8,p8~X8!, ~6.10!
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where ha,p;a88,p8
(k,X,X8! is the Ursell function between

two loops. Similarly, the linear response equation~6.6!, in
time representation and withL written in terms ofL* and
Ueff by using~6.4!, is the analog of the expression~4.27! for
the induced charge density in the loop formalism,
with ra,p(X)ha,p;a8,p8(r ,X,X8)ra8,p8(X8) in place of
ra,p;a8,p8
(2)T (r ,X,X8). However, the formal similarity is not so
complete as to allow a one-to-one correspondence between
objects of both formalisms.

The perturbation Mayer formalism developed for the
loops in Sec. V differs from the standard many-body pertur-
bation theory in two main respects. First, in the standard
theory, the reference system is the noninteracting gas,
whereas, in the present formalism, the interaction between
the charges that are exchanged is taken into account nonper-
turbatively from the start. Second, in the standard many-
body perturbation theory, the basic objects associated with
the particles are free-propagator loops and the potential be-
tween the latter ones involves only adiscretenumber of
points in the propagators, whereas, in the potential between
exchange loops,every line element of both curves interacts
with at least another one. This second difference is crucial
and implies that we could not get a one-to-one correspon-
dence between the two diagrammatics, even if we introduced
another decomposition of the Mayer bond into an infinite
sum of bonds,

f ~L,L8!5 (
N51

`
@2bv~L,L8!#N

N!
, ~6.11!

and if we expanded the weightr~L! about its value
r0~L!5z0~L! for the noninteracting system. However, in
the Maxwell-Boltzmann statistics approximation@where only
exchange loopsLa,15Ea with p51 survive; see~3.17!# only
one Brownian bridge is associated with each point of a
Mayer diagram and a correspondence can be sketched be-
tween some Fourier transform over the Brownian bridges
and the loopLa

0,MB~k,s! made of two free propogators in the
Maxwell-Boltzmann limit.La

0,MB~k,s!, which is the value of
La

0 in the regimela
2k2/2@bma , is obtained by replacing

na
0~k! by ebmae2la

2k2/2 and 12na
0~k! by 1. For instance, in

Ref. @21#, the case of the OCP is dealt with as follows. The
decomposition f ~E i ,E j !5( n51

` @2bv~E i ,E j !#
n/n! of the

Mayer bond between two filamentsE i andE j is used in the
Mayer graphs of the filament-fugacity expansions. In those
graphs, each point has a weightza,1* , which is equal to the
densityra

0,MB~b,ma! of a noninteracting gas with Maxwell-
Boltzmann statistics. This weightz(E)5za,1* is a constant
independent fromE @contrary to the density of closed fila-
mentsrMB~j!# and, though all thef̃ bonds in this decompo-
sition explicitly depend on the shapes of the two filaments,
the integration over the shapes of the filaments in the convo-
lution chains of bonds2be2v~E ,E8! can be done explicitly.
Moreover, since only one Brownian bridge is associated
with each point of a graph, the Fourier transform of the
convolution *dRi*D~ji!v~E i21,E i!v~E i ,E i11! over
the position variable Ri112Ri21 is proportional to
@vC(k)#

2*D(ji)exp$ilak•@ji(si8)2ji(si)#%, which is a
function of the difference si82si . More precisely,

za,18 *D(j)exp$ilak•@j(s8)2j(s)#%5ra
0,MBexp@2(la

2k2/2)us
2s8u(12us2s8#)]5haLa

0,MB(k,s2s8).

B. Coulombic-divergency resummations and chain potentials

In order to get finite graphs in the various diagrammatics,
the Coulomb divergencies are resummed, at least partially,
by introducing a chain potential. In the classical case, the
chain potential@15# is the sum of all the convolutions of
bonds2beaea8vC with a weightra for each intermediate
point. The classical chain potential is equal to2beaea8
times the Debye-Hu¨ckel potentialfDH(r )5exp@2kDHr #/r . It
appears in the Mayer-Abe formalism as well as in the expo-
nentiated version developed by Meeron. In both cases, two
points in a diagram can be linked by at most one bond and
there can be no convolution of bonds2beaea8fDH . The
standard perturbation many-body formalism is analogous to
Mayer formalism in the sense that the auxiliary bonds in the
latter are (2beaea8vC)

N/N!, with N51,...,̀ , and the re-
summed bonds are~2beaea8fDH!N/N!. ~The bonds with
N>2 can be viewed as products of the more elementary
bond2beaea8fDH arising from the resummation of single
chains because these bonds involve the proper symmetry fac-
tor N!.! On the contrary, the loop formalism is to be com-
pared rather with Meeron resummation scheme, where there
are only two kinds of bonds: the auxiliary bonds are
2beaea8vC and f1beaea8vC and the resummed bonds are
2beaea8fDH and exp~2beaea8fDH!211beaea8fDH .

In the standard many-body theory, the same kind of re-
summation process as in the classical Mayer formalism can
be introduced, in order to deal with the nonintegrability of
the Coulomb potential. The chain potential is the sum of all
the chains of interaction lines linked by free proper polariza-
tionsLaa8

0
5da,a8La

0. It proves to be equal to the so-called
RPA potential~which can be derived along other lines@30#!

2beaea8fRPA~k,n!5
2beaea8vC~k!

12bvC~k!(
a

ea
2La

0~k,n!

.

~6.12!

At large distances, the zero-frequency component offRPA
decays faster than any inverse power-law with a leading term

fRPA~r ,n50! ;
r→`

ZRPA
e2~ZRPAkRPA!r

r
, ~6.13!

where kRPA
2 524pb(aea

2 Laa
0 ~k50,n50!54pb(aea

2]r0Q

~b,ma!/]~bma!. ZRPA is a renormalization factor of the charge
@21#

ZRPA5F2
p\2

3 (
a

ea
2

ma

]2ra
0

~]ma!2G21/2

. ~6.14!

Though the zero-frequency component of the RPA chain po-
tential fRPA~r ,s! decays faster than any inverse power law,
the nonzero-frequency components are purely Coulombic
@21#, fRPA~k,nÞ0!5h(n)vC~k! and

(
nÞ0

e2 i2pn~s12s2!fRPA~r ,n!5
1

r
h~s12s2!, ~6.15!
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whereh(s12s2)[(nÞ0e
2 i2pn(s12s2)h(n) has the property

~5.35!.
As pointed out in Sec. VI A, in the present paper we use

a decomposition off into auxiliary bonds that is different
from ~6.11! and, in the loop-fugacity@loop-density# expan-
sions, the weight of a loop isza,p~X!@ra,p~X!# instead of a
series of graphs where every point would have a weight
equal toza,p

0 ~X!5r a,p
0 ~X!. The difference between the for-

mulas forkRPA
2 ~6.13! and

k254pb(
a

ea
2

]ra
Q

]~bma!
U

b

24pb(
a

ea
2E dr r~2!TQunonexch~r !

@see~4.9! and~5.14!# reflects the difference betweenr a,p
0 ~X!

andra,p~X!. We notice that, if we consider a system of non-
interacting particles with various speciesa and associated
chemical potentialsma

0 such that its loop densityr a,p
0 ~X!

satisfies the relation

(
p51

p2E D~X!ra,p~X!5 (
p51

p2E D~X!ra,p
0 ~X!

5]ra
0/]~bma

0 !,

then k254pb(aea
2]r a

0/]~bma
0!, but this latter relation is

useless because the densityra
0 cannot be related tora in a

simple way. Indeed, an ideal gas cannot be found such that
*Dp~X!r a,p

0 ~X!5g a
0(b,m a

0 ,p) might be equal to
*Dp(X)ra,p(X)5ga(b,$ma8%a851,...,ns

,p) for everyp.
Nevertheless, a ready comparison can be made between

the decay of the RPA potential in the standard theory and the
falloff of the sum of the four elementary bonds in the ‘‘lin-
earized’’ version of the loop formalism. In this version, thef
bond is decomposed according to~6.11! and ~5.8! and no
product of f̃ 8 bond chains is resummed, so that no sum of
single chains is exponentiated. As mentioned at the begin-
ning of this subsection, in this resummation process, the
excluded-convolution rules still hold and two points can be
linked by at most one multiple bond. The four elementary
bonds are merely the sum of the four kinds of single chains,
namely,Fcc, Fmc, Fcm, andFmm, according to the diagram-
matic definitions of Sec. V B.@Fmm does coincide with the
linearized value ofFR ~5.22! with respect to the argument in
the exponential.# According to ~5.28!, the sum of the four
bonds is equal to

2beaea8f linearized chain~L,L8!52beaea8felect~L,L8!

1W~L,L8!. ~6.16!

felect~r ,X,X8! decays faster than any inverse power law of
the distance, whereasW~r ,X,X8! has an algebraic falloff.
Henceforth, felect~r ,X,X8! is to be compared with
fRPA~r ,n50!5*0

1dsfRPA~r ,s!, while W~r ,X,X8! is analo-
gous to(nÞ0 exp~2i2pns!fRPA~r ,n!.

As a conclusion, the possibility of algebraic tails in the
quantum correlations already appears in chain potentials. In
the RPA theory, they lie in the nonzero-frequency compo-

nents offRPA and, in the loop formalism, they originate from
W~r ,X,X8!, where the functiond„t2P(t)2[ t82P(t8)] …
21 has the same property ash(s,s8) @see~6.15!#. The anal-
ogy between the two functions can be displayed more pre-
cisely by considering the Maxwell-Boltzmann limit of the
RPA theory.@21# The Maxwell-Boltzmann limit offRPA can
be obtained directly by considering the Mayer diagrams of
the fugacity expansion for the equivalent gas of closed fila-
mentsE ~see Sec. VI A! and by performing chain summa-
tions analogous to those performed in the quantum RPA
theory as well as in the fugacity-expansion diagrammatic
version of the classical Debye-Hu¨ckel model. The corre-
sponding chain potential reads

feff~r i j ,ji ,jj !5E
0

1

dsE
0

1

ds8

3fRPA
MB ~r i j1la i

ji2la j
jj ,s2s8!,

~6.17!

wherefRPA
MB ~r ,s! proves to be the Maxwell-Boltzmann limit

of fRPA~r ,s! @see~6.12!#. feff~r i j ,ji ,jj ! can be split into a
short-ranged part that decreases exponentially~it is the
Maxwell-Boltzmann approximation of the contribution from
the zero frequency of the RPA potential! and a long-ranged
part equal to *0

1ds*0
1ds8hMB(s,s8)vC(r i j1la i

ji2la j
jj )

@see~6.15!#. In the limit \→0, hMB(s,s8) becomes equal to
d(s2s8)21 and the long-ranged part offeff becomes equal
to W(La i ,1,La j ,1). Thus the dominant asymptotic behavior
of feff at the first order in\ is equal to that ofW for loops
with a sizep51, namely,

W3~L
a i ,1,La j ,1!5b i j E

0

1

dsE
0

1

ds8@d~s2s8!21#@la i
jj~s!

•“ r i j
#

3@la j
jj~s8!•¹ r i j

#vC~r i j !. ~6.18!

C. Inadequacy of the standard perturbation theory

The existence of algebraic tails in the particle-particle cor-
relation can be investigated through the standard perturbation
theory only in the very special case of the OCP@21# because
the latter obeys two exact specific sum rules linked to the
fact that the density of charge in the OCP is proportional to
the density of particles. Indeed, it can be shown exactly, by
using the equation of mechanical balance for every volumic
element@30,37#, that

erOCP
ind ~k!

dq
5211

k2

4pe2r2xT
2 1o~ uku2!. ~6.19!

xT is the isothermal compressibility derived from the thermal
pressure@see~2.11!#. On the other hand, the system satisfies
the exact sum rule~4.43!. Under the assumption that every
frequency componentL* ~k,n! of the exactproperpolariza-
tion L* ~k,s! is invariant under rotations ofk, it can be
shown that, if these frequency components have algebraic
decays, so do the corresponding components of the exact
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total polarizationL~r ,s!: L~r ,nÞ0! has the same algebraic
decay asL* ~r ,nÞ0! and if L* ~r ,n50! decays as 1/r g,
L~r ,n50! has a 1/r g14 falloff.

The argument can be summed up as follows. According to
the sum rules~4.43! and ~6.5!, the small-k expansion of
L~k,nÞ0! starts ask2 and this term of orderuku2 is different
from 21/@be2vC~k!#, which is the corresponding term for
the opposite of the classical structure factor, according to the
Stillinger-Lovett sum rule~4.42!. Subsequently, according to
~6.2!, the same is true forL* ~k,nÞ0!, so that the order inuku
of the first nonanalytic term is the same in the small-k ex-
pansion of L* ~k,nÞ0! and in that of
L~k,nÞ0!: L* ~k,nÞ0! andL~k,nÞ0! have the same al-
gebraic falloff ~see the general discussion of Sec. II C in
paper II!. Ueff~r ,nÞ0! has a 1/r tail, but it does not rule the
asymptotic behavior ofL~k,nÞ0!, by virtue of the harmo-
nicity of the Coulomb potential, as displayed in paper II. On
the other hand, the sum rule~4.43! implies that the first term
in the small-k behavior ofL~k,n50! coincides with the clas-
sical value21/@be2vC~k!# and the comparison of the com-
pressibility sum rule~6.19! with the relation~6.6! implies
that the next term is analytic and of orderuku4. These two
properties imply thatL* ~k,n50!Þ0. As a result, if
L* ~r ,n50! decays as 1/r g, Ueff~r ,n50! @see~6.3!# also be-
haves as 1/r g, butL~k,n50! falls off only as 1/r g14, accord-
ing to the structure of the fraction in~6.2!.

In the case of multicomponent plasmas, on one hand, the
screening rule~4.41! does not allow one to get any informa-
tion about the second moment ofLaa8~r ,n! and, on the other
hand, an analog of the compressibility sum rule has not been
found: the first terms in the small-k expansion of
Laa8~k,n50! are not known exactly. Subsequently, nothing
is known about the first terms in the small-k behavior of the
exactLaa8

* (k,n) and, even if the proper polarizationL* of
a multicomponent plasma decays as 1/r g, nothing can be
inferred about the large-distance behavior ofUaa8

eff (r ,n) or
Laa8~r ,n!. In fact, as shown in paper II, the particle-particle
correlation decays as 1/r 6 and the small-k expansion of
Laa8~k,n50! involves a nonanalytic term only at the order
uku3 @whereas, in the case of the OCP,Laa8~k,n50! is ana-
lytic up to the orderuku4 included#. Then, according to a mere
dimensional analysis of~6.6!, the small-k expansion of
(aeara

ind~k! might involve a nonanalytic term of orderuku.
However, this nonanalytic term of orderuku, which includes a
summation over the speciesa anda8, has a zero coefficient

because, as discussed in paper II, the induced charge density
decreases only as 1/r 8 and not as 1/r 4. The latter result is also
obtained from the loop formalism, which allows one to ex-
hibit the classical macroscopic screening in a nicely tractable
way. Eventually, the point of view of the Feynman-Kac rep-
resentation proves to be more efficient than the standard per-
turbation many-body theory to study the large-distance be-
havior of correlations in multicomponent plasmas.
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APPENDIX A

In this appendix we show how, for a Hamiltonian inde-
pendent from the spin, a notion of exchange loops emerges
from the fact that the permutations can be collected into
classes where all the permutations have the same irreducible
cyclic structure. For our purpose, it is convenient to writeJ
in position representation with the following particular
choice $i$r i ,Sa i

z %&% i51,...,(aNa
for the basis of quantum

states, which must be symmetric~antisymmetric! under the
permutations of particles of the same bosonic~fermionic!
species. Thei$r i ,Sa i

z %& are chosen to be properly symme-

trized tensorial productŝ i of the individual particle states
ur i ,Sa i

z ( i )&,

i$r i ,Sa i
z %&[ (

$pa%a51,...,ns

)
a

e~pa!

Na!
^

i
urp~ i ! ,Sa i

z
„p~ i !…&,

~A1!

wherep is the composition ofns permutationspa , each of
which acts only on particles of speciesa. For eacha, the
sum overpa runs over the whole set of permutations be-
tweenNa elements.e~pa!51 if the particles of speciesa are
bosons, wherease~pa! denotes the signature ofpa in the case
of fermions.@We notice that, in the definition~A1!, the per-
mutationspa act simultaneously on the position and spino-
rial variables of each particle, so that thei$r i ,Sa i

z ( i )%& ’s are
not eigenstates of the total spin operator, in general.# In this
basis, the infinite-volume limit of~2.3! reads

J5 (
$Na%a51,...,ns

(
$pa%a51,...,ns

(
$pa8 %a51,...,ns

)
a

e~pa!e~pa8 !ebmaNa

@Na! #
2 E )

i
dr i (

$Sa i

z
~ i !% i51,...,(aNa

3F ^

i
^rp8~ i ! ,Sa i

z
„p8~ i !…u Ge2bĤ$Na%F ^

i
urp~ i ! ,Sa i

z
„p~ i !…& G , ~A2!

whereSa i
z ( i ) can take the values2Sa i

,2Sa i
11,...,Sa i

andr i is integrated over an infinite volume. For conciseness, we use

the convention that, if(aNa50, there is no integration over positions or summation over spin states and the corresponding
contribution is 1. We relabel the indexi by a composition of permutationspa

21 and note thate~pa!5e~pa
21! and

e(pa8 )e(pa
21)5e(pa8 +pa

21) ~where+ denotes the composition of permutations!. Then, since the number of permutationspa

betweenNa objects is equal toNa!, we can eliminate the sum over thepa8 in ~A.2! and writeJ as
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J5 (
$Na%a51,...,ns

(
$pa%a51,...,ns

)
a

e~pa!ebmaNa

Na!

3H E )
i
dr i (

$Sa i

z
~ i !% i51,...,(aNa

F ^

i
^rp~ i ! ,Sa i

z
„p~ i !…u Ge2bĤ$Na%F ^

i
ur i ,Sa i

z ~ i !& G J . ~A3!

We notice that every permutationpa can be expressed
uniquely as a product of cycles with no common elements.
Moreover, the signature as well as the result from the inte-
gration over the positions and the summation over the spin
states in~A3! is the same for all the permutations that have
the same cyclic structure. The latter invariance is due to two
reasons: ifpa andpa8 have the same cyclic structure, there
exists a permutationsa such thatpa85sa

21pasa and the
Hamiltonian is unchanged under a permutation of the indices
of the particles of the same species. The set of the permuta-
tionspa of Na elements can be seen as a partition in conju-
gate classes, each of which is made up with permutations
with the same cyclic structure. Each class is characterized by
a sequence$np

a%p51,...,Na
, wheren p

a denotes the number of
cycles with a sizep in the decomposition ofpa into cycles
that have no common element. Then p

a’s obey the constraint

Na5 (
p51

Na

pnp
a . ~A4!

The signature of the permutationpa only depends on the
number of elementsNa and on the total number of indepen-
dent cycles(p51

Na np
a and reads@43#

~21!~Na2(
p51

Na np
a

!. ~A5!

The number of permutations in the same class is

Na!

)
p51

Na

@np
a!pnp

a
#

. ~A6!

@Na! is the total number of permutations betweenNa objects,
n p

a! is the number of global permutations between cycles
with the same sizep, andp is the number of~cyclic! permu-
tations that act only on the objects involved in one of then p

a

cycles with a lengthp and that do not change the order of the
elements inside the cycle.# Equation~A3! can be written as

J5 (
$Na%a51,...,ns

(
$np

a%
p51,..,Na

a51,...,ns

*

)
a F h

a

~Na2(
p51

Na np
a

!
ebmaNa

Na!

Na!

)
p

@np
a!pnp

a
#
G

3H E )
i
dr i (

$Sa i

z
~ i !% i51,...,(

a

Na

F ^

i
^rp0~ i ! ,Sa i

z
„p0~ i !…uGe2bĤ$Na%F ^

i
ur i ,Sa i

z ~ i !& G J . ~A7!

The notation(* means that, for eacha, the n p
a must obey

the constraint~A4!. ha is equal to 1 for the bosons and21
for the fermions andp0 is a composition of some particular
permutationspa

0 in the class of the permutations specified by
the sequence$np

a%p51,...,Na
.

Since the Hamiltonian does not depend on the spin, the
contribution from the spinorial part of the states factorizes
out into the product of the contributions from the spin con-
figurations of the particles that are permuted inside each
cycle of thepa

0’s. For a givenp0, we replace the indexi by
a quadruplet (a,p,k,l ) that labels a particle of speciesa,
which is permuted underp0 inside thekth cycle of lengthp
and has an indexl inside this cycle. Then the term in curly
brackets in~A7! reads

)
a

)
p

)
k51

np
a

F (
$Sa
z

~p,k,l !% l51,...,p

^Sa
z
„pa

0~p,k,l !…uSa
z ~p,k,l !&G

3E )
i
dr i^$rp0~ i !%ue2bĤ$Na%u$r i%&, ~A8!

with u$r i%&[^ i ur i&. The contribution from a configuration
$Sa

z (p,k,l )% l51,...,p is different from zero only if all the par-
ticles that are permuted in the cycle have the same spin state
uSa

z & in this configuration. Then the contribution of the con-
figuration is equal to 1 for every value thatSa

z can take
among the 2Sa11 possible ones. Subsequently, the contribu-
tion from the summation over the configurations
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$Sa
z (p,k,l )% l51,...,p is 2Sa11 for each cycle~a,p,k! and the

total contribution from the spinorial part reads

)
a51

ns

)
p51

Na

~2Sa11!np
a
. ~A9!

Eventually, by using~A4!–~A6! and ~A9!, we rewriteJ in
such a way thatNa does not appear in the coefficients. Thus
the constraint~A4!, with Na51,...,̀ , can be released,n a

p and
p now run from 0 to`, and~A7! leads to the formula~3.1!.

APPENDIX B

In this appendix we resum the Coulomb divergencies of
the diagrams corresponding to the loop-fugacity expansion
of the density of loops. The resummation scheme leads to
formula ~5.36! and the main differences with the loop-
density expansion of the Ursell function, which arise from
the existence of articulation points, are stressed at the begin-
ning of Sec. V D.

In order to get finite weightsw~P ! in ~5.36!, the resum-

mation of the Coulomb rings must include the ring
*dL j

1
2@f

cc~P i ,L j !#
2, which itself gives a divergent contri-

bution because of the nonintegrability of~1/R!2. If we used
the decomposition~5.6! of f to build the auxiliary diagrams
G̃, the above ring would miss in the resummation because
two points in aG̃ diagram can be linked by at most onef̃
bond. In order to make the above ring appear in theG̃ dia-
grams together with the other rings with one internal Cou-
lomb point, namely,*dL j f

cc~P i ,L j !f
mc~P i ,L j ! and*dL j

1
2@f

mc~P i ,L j !#
2, f is written as the sum of the following

f̃ 8-bonds:

f cc~ci ,cj !, f mc~L i ,cj !, f cm~ci ,L j !, f mm~L i ,L j !,

f TT~L i ,L j !,
1
2 @ f cc~ci ,cj !#

2, f cc~ci ,cj ! f
mc~L i ,cj !,

f cc~ci ,cj ! f
cm~ci ,L j !,

1
2 @ f mc~L i ,cj !#

2, 1
2 @ f cm~ci ,L j !#

2,
~B1!

where f TT is a truncated form off T defined in~5.7!,

f TT~L i ,L j ![ f T~L i ,L j !2 1
2 @ f cc~ci ,cj !#

2

2 f cc~ci ,cj ! f
mc~L i ,cj !

2 f cc~ci ,cj ! f
cm~ci ,L j !2 1

2 @ f mc~L i ,cj !#
2

2 1
2 @ f cm~ci ,L j !#

2. ~B2!

The diagrammatic representation of the decomposition~B1!
is shown in Fig. 6 and aG̃ diagram is drawn in Fig. 7~a!.

After a resummation of the Coulomb chains defined as in
Sec. V B, theP diagrams in formula~5.36! are defined
univocally, if we introduce charge-charge, multipole-charge,
and charge-multipole bondsF z

cc, F z
mc, and F z

cm, respec-
tively, that satisfy the following excluded-convolution rule:
the convolutions F z

cc
*F z

cc, F z
mc
*F z

cc, F z
cc
*F z

cm, and

FIG. 6. Diagrammatic representation of the decomposition~B1!
of an f bond into the ten auxiliary bondsf̃ 8 that are adequate for the
resummation of the weights associated with the points in the proto-
type diagramsP of the loop-fugacity expansions. The truncatedf TT
bond~B2! is denoted by a double dotted line. The extra bonds with
respect to the decomposition of Fig. 2 are drawn as multiple bonds
with the graphical conventions of Fig. 2.~The symmetry factor 2
does not appear in the representation of a diagram.!

FIG. 7. Typical auxiliaryG̃ diagram and the prototype diagramP to which it contributes by the resummation process defined in Sec. V D.
An FRz

bond is denoted by a solid line with a superscriptFRz
, while the nonsymmetric truncated bondFRzT

cm is denoted by a double solid line
with an arrow pointing to the end point that is not linked to any other point.wd is a short notation for the weightwdressedandz is the value
of the weightwbare. C 1

$a1% is a bare point that disappears in the resummation process, whereasP 1 is a dressed point involved in a
convolutionf cc ~C 1

$a1%,P 1!* f
cm~P 1,P 2!; P 1 is left over in the resummation process and appears as the intermediate point of a convolution

Fcc~La ,P 1!*F
cm~P 1,P 2! in the correspondingP diagram.C 1

$55% is a Coulomb point and the bond12@f
cm#2~C 1

$5,5%,P 5!#
2 contributes to the

weight ofP 5, whereasP 3 is not a Coulomb point, and the bond
1
2@f

cm#2~P 2,P 3! contributes to the truncated dressed bondFRzT
cm (P 2 ,P 3), in

which the contributions such as12@f
mc~P 2,P 3!#

2 are substracted~becauseP 3 is linked only toP 2!. P 5, which is linked only toP 4, is a
dressed point, and the bond linkingP 4 to P 5 is a full bondFRz

(P 4 ,P 5), whereasP 6, which is linked only toLa , is a bare point and the
bond betweenLa andP 6 is a truncated bondFRzT

cm (La ,P 6).
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F z
mc
*F z

cm appear only if the intermediate point of the chain
has Coulomb rings attached to it in the correspondingG̃
diagrams.@The weightw~P i! does not depend on the posi-
tion Ri of the pointP i .# Thus it is convenient to introduce
the notion of ‘‘bare’’ and ‘‘dressed’’ points, according to
whether or not the point carries Coulomb rings in theG̃
diagrams that lead to the considered diagramP. In Fig. 7~a!,
C 1

$a1% is a bare point, whereasP 1 is a dressed point. The
excluded-convolution rule can be expressed as follows: there
cannot be convolutionsF z

cc
*F z

cc, F z
mc
*F z

cc, F z
cc
*F z

cm, or
F z

mc
*F z

cm where the intermediate point would be a bare
point. Moreover, in order not to count twice the Coulomb
rings with at least one intermediate point that already appear
in the weight of the dressed points that are also articulation
points, we must define two kinds of dressed bonds: a ‘‘trun-
cated’’ dressed bondFRzT

cm (P i ,P j ), if P j is a bare point that

is linked only toP i in the P diagram @see the resummed
bonds linking respectivelyP 2 to P 3 andLa to P 6 in Fig.
7~b!#; a ‘‘full’’ dressed bondFRz

in other cases@see the bond

linkingLa to P 2 and that linkingP 4 to P 5 in Fig. 7~b!#. The
nonsymmetric truncated dressed bond is equal to the full
dressed bond minus the contributions from the Coulomb
rings with at least one intermediate Coulomb point~where
P j is an intermediate Coulomb point!

FRzT
cm 5FRz

2 1
2 @Fz

cc~ci ,cj !#
22Fz

cc~ci ,cj !Fz
mc~L i ,cj !

2 1
2 @Fz

mc~L i ,cj !#
2. ~B3!

The calculation of the resummed bonds is analogous to
that of Sec. V C because the bondsf cc, f mc, andf cm play the
same role in both processes and the role played byf mm and
f T in Sec. V C is performed in Sec. V D byf mm, f TT ,
[ f cc] 2/2, f ccf mc, f ccf cm, [ f mc] 2/2, and [f cm] 2/2, with the re-
lation ~B2!. The bondsF z

cc, F z
mc, F z

cm, and FRz
have the

same expressions as the corresponding resummed bonds in
the loop-density expansion of the Ursell function, except that
the square inverse lengthk2 is replaced by

kz
254pb (

a51

ns

ea
2 (
p51

`

p2E D~X!za,p~X!

5
]

]ma
S 4p (

a51

ns

ea
2 (
p51

`

pE D~X!za,p~X!DU
b

.

~B4!

Indeed, the weight of the points in the loop-fugacity expan-
sion of the loop density isz~L! instead ofr~L! and since
z~L! depends onma only through the term@exp~bma!#p, the
relationbpz~L!5]z~L!/]ma! is valid for an interacting sys-
tem as well as for an ideal gas. In the case of bosonsz~L!
.0, k z

2 is positive andkz is real. Moreover, according to
~3.16!, k z

2 is bounded by the finite valuekRPA
2 ,

0,kz
2

,4pb (
a51

ns

ea
2 (
p51

`

p2E D~X!za,p
0 ~X;b,ma!

54p (
a51

ns

ea
2

]ra
0Q~b,ma!

]ma
U

b

5kRPA
2 . ~B5!

In the case of fermions, the series~B4! over p is alternate.
Let us consider a noninteracting gas of quantum particles
with massma and spin 2Sa11 ~with a51,...,ns! at inverse
temperatureb and with a chemical potentialma*

0, such that
its density satisfiesra

0Q(b,ma*
0)5(p51

` p*D(X)za,p(X;
b,ma). Then

kz
254pb (

a51

ns

ea
2

]ra
0Q~b,ma*

0!

]~bma! U
b

. ~B6!

This formula is slightly different from the RPA expression
~6.13!. At this point, we may only conjecture thatma*

0 is an
increasing function ofma with a finite derivative, so that Eq.
~B6! implies thatk z

2 is positive and finite also in the case of
fermions.

The weight of a bare point is merely

wbare~P !5z~P !. ~B7!

The weight of a dressed pointwdressed~P ! is the sum of the
contributions from all the Coulomb rings that may be at-
tached directly to the pointP in the G̃ diagrams~see Fig. 8!.
According to the same topological argument as that used to
reexpressFR in terms of exponentials of sums of single
chains,

wdressed~P !5z~P !@eI r ~P !21#, ~B8!

whereI r~P ! is the sum of all the Coulomb rings with at least
one internal point, in which the two bonds attached toP are
either two f cc bonds, onef cc and onef mc bond, or twof mc

bonds. The root pointLa has the particular weight

w~La!5z~La!e
I r ~La!. ~B9!

FIG. 8. Diagrammatic representation of the weightw~P ! ~B8!
of a dressed point. An arbitrary number of Coulomb rings are at-
tached toP in the G̃ diagram and the rings contain an arbitrary
number of internal points.
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According to the definition ~5.21! of cchain,
I r~P !521

2bea
2cchain~P ,P !, where 2 is the symmetry factor

of the sum of ringscchain~P ,P !. I r~P ! has a finite value
given by ~5.29!,

I r~P !5
1

2
bea

2E
0

p

dtE
0

p

dt8
12e2kzuX~t!2X~t8!u

uX~t!2X~t8!u
.

~B10!

The inequality@(12e2kzx)/x#,kz , for x.0, can be used to
find upper bounds independent from the internal variablesX.
Since the internal energyEb

int~P ! ~3.7! of a loop is positive,
2bEb

int~P !1I r~P !,(bea
2/2)p2kz . However, a better upper

bound can be found if we exhibit the self-interaction energy
Eself

fz (P ) of a loop with the potentialfz~r !5exp(2kzr )/r

instead of vC~r !. Eself
fz (P ) is given by ~3.15! with

exp@2kzuX~t!2X~t8!u in place of 1/uX~t!2X~t8!u and it con-
tains neither short-distance nor large-distance singularities.
According to~3.15! and ~B10!,

2bEself~P !1I r~P !52bEself
fz ~P !1

1

2
bea

2E
0

p

dtE
0

p

dt8

3$12~12dP~t!,P~t8!!d„@t2P~t!#

2@t82P~t8!#…%
12e2kzuX~t!2X~t8!u

uX~t!2X~t8!u
.

~B11!

This rewritting makes no spurious divergencies appear. The
first term on the right-hand side of~B11! is negative and the
second term is lower than

1
2bea

2kzE
0

p

dtE
0

p

dt8$12~12dP~t!,P~t8!!d„@t2P~t!#

2@t82P~t8!#…%5p 1
2bea

2kz . ~B12!

Eventually, we get

uz~P !ueI r ~P !5uza,p* ~ma!ue@2bEb
int

~P !1I r ~P !#

,uza,p* ~ma1 1
2ea

2kz!ue2Eb
0

~$tl %!, ~B13!

The upper bound in~B13! is the fugacity of a noninteracting
loop in which the particles have a chemical potential that
includes the self-energy of a point particle creating a poten-
tial in the manner of Debye, exp(2kzr )/r . While uwbare~P !u
~B7! is bounded by the absolute value of the free-loop den-
sity uza,p* (ma)uexp@2Eb

0($t l%)#, according to~3.16!, ~B13!
provides an upper bound foruwdressed~P !u<uwbare~P !u
1uz~P !uexp@I r~P !#, according to~B8!.

APPENDIX C

In this appendix we study the integrability of the re-
summed prototype diagrams for both the loop-fugacity ex-
pansion of the density of loops and the loop-density expan-
sion of the Ursell function between loops. The dependence
of the density of loops upon the extension of loops is also
discussed.

Let us first consider the convergence of the integralI P
associated with the diagramP,

I P~La![
1

SP
E )

m51

M

@dPmw~Pm!#F) FzG
P
. ~C1!

At short distances in the space of the loop variables, i.e.,
when a curveVi nearly coincides with a curveVj , every
bond Fz proves to be integrable. Indeed, the singularities
1/uRi2Rj u and 1/uVi~t!2Rj u in the various bonds are inte-
grable at short distances, as well as the singularities
1/uRi2Rj u

2, 1/@uRi2Rj uuVi~t!2Rj u#, and 1/uVi~t!2Rj u
2 in

FRzT
cm . Moreover, whenVi tends to Vj , felect~P i ,P j !

2velect~P i ,P j ! tends to a constant2pipjkz , while the diver-
gence of exp@2bi jv~P i , P j !# for ea i

ea j
,0 is smoothed out

by the functional integration over the Brownian pathsj l
i con-

tained inD~X i!. ~The space of the paths that cross one an-
other has a zero measure.! Henceforth, the five bondsFz are
integrable at short distances separately. The divergences that
might come from products of bondsFz are in fact spurious
since they are introduced by the decomposition of the bondf
into auxiliary bondsf̃ , whereas products of bondsf are in-
tegrable at short distances. By suitably collecting theP dia-
grams together, the possible short-distance divergencies of
@PFz] P must disappear, as is the case in the classical proto-
type diagrams introduced by Meeron@40,41#.

The integrability ofI P~La! at large distances in the space
of the loop variables reduces to the study of the large-Ri j
behavior of the bondsFz~P i ,P j !5Fz~Ri j ,X i ,X j ! between
internal points and to the study of the large-uVa~t!2Rj u be-
havior of the bondsFz~La ,P j !5Fz~Va ,Rj ,X j ! between the
root pointLa and internal pointsP j . Indeed, the integrals
over the variablesX5~$t l%l51,...,p21, $jl%l51,...,p! of any poly-
nomial in the variablesX multiplied byw~P !5wa,p~X! are
finite because, according to the conclusion of Appendix B,
the weight w~P ! is bounded by the Gaussian

exp@2(12(l tl
2)/l2#, while the measureP l51

p D~jl! is also
Gaussian. At large distances, the dressed bondsF z

cc, F z
cm,

andF z
mc have exponential falloffs, whileFRz

andFRzT
cm decay

algebraically as the leading term in the asymptotic behavior
of v2velect. For a dressed bond between two internal points
P i and P j , this tail starts as the 1/R3 term W3~R,X i ,X j !
given in ~5.34!. For a dressed bond betweenLa and an in-
ternal pointP j , v2velect behaves as

E
0

pa
dtE

0

pj
dt8$d„@t2P~t!#2@t82P~t8!#…21%

3HX j~t8!•“Rj S 1

uVa~t!2Rj u
D

1
1

2
@X j~t8!•“Rj

#2S 1

uVa~t!2Rj u
D

1OS 1

uVa~t!2Rj u4
D J . ~C2!

The existence of articulation points implies that, when two
clusters of points in aP diagram are separated by a distance
R, each cluster keeping a bounded size, the integrand@PFz] P
may decay asv2velect, if the two clusters are linked to each
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other by only one dressed bond. The integrals associated
with the correspondingP diagrams can be only conditionally
convergent.

An analogous problem exists for the coefficients in the
fugacity expansions for the pressure and correlations in two-
dimensional classical plasmas without any resummation. In
the case of neutral systems of particles with arbitrary charges
~non-charge-symmetric case! and hard cores, Speer@39# has
shown that the coefficient of orderN in the fugacityz does
exist for sufficiently low temperaturesT<TN if it is calcu-
lated as follows. The configuration space is subdivided into
regions corresponding to spatial configurations in which the
particles are grouped hierarchically into neutral clusters, such
that the interparticle distances within a cluster are an order of
magnitude less than the distance from the considered cluster
to any other disjoint cluster. Because of the existence of the
boundary, a further subdivision of configuration space into
subregions must be made. Within a given subregion, each
cluster may be either averaged over orientations or confined
to lie near the boundary of the system of finite volumeL. At
sufficiently low temperatures, when calculating the contribu-
tion from the various configurations to the coefficient ofzN,
the contribution from any subregion involving a cluster con-
fined near the boundary proves to vanish in the infinite vol-
ume limit, while the contribution from subregions where all
the configurations are in the bulk is finite, if the orientations
of the neutral clusters are averaged before the integration
over the remaining coordinates. In the present case, any pos-
sible 1/R2 or 1/R3 terms in the large-uVa2Rj u or large-Ri j
expansion of [LFz#P is generated by the existence of an
FRz

bond or aFRzT
cm bond that links two sets of loops that are

not connected to each other by any other bond. By analogy
with the result of Ref.@39#, we expect that the integration
over the internal degrees of freedomX ~shapes of the loops!
and the relative positions of the loops inside each cluster
must be performed before the integration over the vectorR
that characterizes the relative position of the two clusters. Let
P 0 be the end point of the bond that is in the same cluster as
La andP i the other one.~P 0 may coincide withLa .! We
use the notationsR0a5Ra2R0 andR0 j5Rj2R0. After inte-
gration over the loops inside the clusters, exceptLa , P 0,
andP j , and integration over the shapeX j of P j , the pos-
sible nonintegrable tail that may come from the leading term
of v2velect in the asymptotic behavior of
*D~X j !w~P j !*@LmÞ0,jdPmw~Pm!#[LFz#P has the following
form. If P 0 does not coincide withLa , the latter leading
term is given byW3~R0 j ,X0,X j !, which reads

b i j E
0

p0
dtE

0

pj
dt8$d„@t2P~t!#2@t82P~t8!#…21%

3G1~Ra0 ,Xa ,X0!E D~X j !G2~ uX j u!

3@X0~t!•“R0 j
#@X j~t8!•“R0 j

#S 1

R0 j
D ; ~C3!

If P 0 coincides withLa , the algebraic tail is given by the
asymptotic behavior of@v2velect#~Va ,Rj ,X j ! @see ~C2!#,
with the result

2b i j E
0

p0
dtE

0

pj
dt8$d„@t2P~t!#2@t82P~t8!#…21%

3E D~X j !G2~ uX j u!HX j~t8!•“Rj S 1

uVa~t!2Rj u
D

1
1

2
@X j~t8!•“Rj

!] 2S 1

uVa~t!2Rj u
D

1OS 1

uVa~t!2Rj u4
D J . ~C4!

In ~C3! and~C4!, we have omitted the dependences upon the
variablesa, p, and t in the notationGj . According to the
rotational invariance of the various measures and bonds, the
quantity G2~uX j u! is invariant under rotations ofX j . As a
consequence, after integration overX j , the term~C3! does
vanish, as well as the first term in~C4!, while the second
term in~C4! is proportional toD@1/uVa~t!2Rj u# and is in fact
short ranged. Eventually every graphP corresponds to a fi-
nite integralI P~La!.

Now, we turn to the dependence ofr(La)5raa ,pa
(Xa)

on the variablesXa . First I P~La! remains finite when one of
the variables~$t l

a%l51,...,p21, $j l
a%l51,...,p! becomes very large,

i.e., when the extent of the curveVa becomes very large.
Indeed,I P~La! defined in~C1! can be written as

I P~La!5
1

SP
E )

j51

J~P!

@dP j*w~P j* !#

3F )
j51

J~P!

F~La ,P j* !Gg~$P j* % j51,...,J~P!!, ~C5!

where theP j* ’s are theJ~P! points that are linked toLa by
an Fz bond in the graph P. The dependence of
I P~La!5I P(Xa ;aa ,pa) on the variableXa originates from
the bondsFmc(La ,P j* ), FRz

(La ,P j* ), or FRzT
cm (La ,P j* ).

@The bondsFcc(La ,P j* ) or F
cm(La ,P j* ) depend onRa ,

but not onXa .# On one hand,Fmc(La ,P j* ) is proportional
to the potential in the manner of Debye created inRj* by a
closed curveVa~t! with a densitysa(r )5*0

padt d„Va(t)
2r ]. Thus, when the extent of the curveVa becomes very
large, after integration over the internal pointsP j* , the vari-
ous bondsFmc(La ,P j* ) give a finite contribution toI P~La!.
On the other hand, when the distance betweenP j* and each
point of the curve Va becomes large, the bonds
FRz

(La ,P j* ) and FRzT
cm (La ,P j* ) decay as the potential

~C2!, which is proportional to

E drE
0

1

ds@s̃a~r ,s!2sa~r !#

3 (
l 850

pj21 HX j~ l 81s!•“Rj S 1

ur2Rj u
D1OS 1

ur2Rj u3
D J .
~C6!

The density s̃a is defined ass̃a(r ,s)5*0
padt d„t2P(t)

2s…d„Va(t)2r …5( l50
pa21d„Va( l1s)2r …. The contribution

of the potential~C6! to I P~Xa ;aa ,pa! remains finite when
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the extent of the curveVa becomes infinite becausesa~r !
and s̃a~r ,s! are nonzero only on the curveVa , which has
essentially the space dimension of a Brownian trajectory.
Since the measureD~j a

l ! is Gaussian,*@P l51
p D~j a

l !#I P~La!
also remains finite when the size of a givent l

a goes to
infinity. At this point, we may only conjecture that the
same is true for @P l51

p D~j a
l !#u(PI Pu. By using r~La!

5w~La!(PI P~La! @see ~5.36! and ~C1!# and the bound
~B13! over the weightw, we get

UF)
l51

p

D~jl
a!Gr~La!U,uza,p* ~ma1 1

2ea
2kz!u

3expS 2
1

2la
2 (

l
@ t l
a#2D F)

l51

p

D~jl
a!GU(

P
I P~La!U.

~C7!

Thusr~La! and*@P l51
p D~j a

l !#r~La! are expected to decay
faster than any inverse powerlaw in the variables
~$t l

a%l51,...,p21,$j l
a%l51,...,p! and $t l

a%l51,...,p21, respectively.
This is coherent with the fact that, in the present formalism,
the density of quantum particlesr a

Q is deduced fromr~La!
by ~4.3!.

Let us consider the integrability of theP diagrams when
they are multiplied byr~La!r~Lb! and integrated over
D~Xa!D~Xb!. At short distances, theP diagrams are inte-
grable for the same reasons as theP diagrams. As argued
previously, the densityr~P ! is assumed to decrease very fast
when the variables~$t l%l51,...,p21,$jl%l51,...,p! become large
and the integrability of theP diagrams, when the distances
between the loops become very large, is determined by the
large-R behavior of the bondsF. These resummed bonds
decay at least as the 1/R3 termW3. Let us consider two sets
of points in a givenP diagram: a set of internal points~loop
variables! and the set containing the other internal points and
the two root points. Since everyP diagram is connected and
does not involve any articulation point, there are at least two
paths ofF bonds without any common intermediate point
that join the former set to the latter one. When the distanceR
between the two clusters is far larger than the distances be-
tween the loops within each cluster, the integrand@PF]P
corresponding to this configuration behaves at least as
~1/R3!2 and the integral is absolutely convergent at large dis-
tances. The same mechanism ensures the integrability of the
Mayer diagrams for classical dipolar fluids@44#.
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