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Correlations in quantum plasmas. I. Resummations in Mayer-like diagrammatics
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For a system of point charges that interact through the three-dimensional electrostatic Coulomb potential
(without any regularizationand obey the laws of nonrelativistic quantum mechanics with Bose or Fermi
statistics, the static correlations are expressed in terms of Mayer-like diagrams. The exchange effects are taken
into account systematically and the long-range Coulomb divergencies are exactly resummed in order to get
finite diagrams. For this purpose, in the framework of the grand canonical ensemble, the matrix elements of the
imaginary-time evolution operator are represented by the Feynman-Kac functional integral according to Gini-
bre’s idea[J. Math. Phys6, 238 (1965; 6, 252 (1965, 6, 1432(1965] and we exhibit a correspondence
between the correlations in the quantum system of point particles and the distribution functiociassieal
fluid of “exchange” loops with Browniamandomshapes. The size of a loop, which corresponds to the number
of particles involved in the corresponding cyclic permutation, and the shape of a loop, which describes the
guantum fluctuations, play the part of internal degrees of freedom that must be integrated over when calculat-
ing the distributions relative to the quantum point charges. The loops interact thrawghbedypotential that
is different from the electrostatic interaction between two charged curves: each line element of a loop interacts
only with a discrete number of line elements in every other loop. The linear response theory to an infinitesimal
external charge distribution can be written in this formalism by a formula analogous to that of classical
statistics, and the loop-fugacity and loop-density expansions of the loop-distribution functions are derived by
the usual techniques of Mayer diagrams generalized to extended objects. At large distémedsop potential
behaves as fl/and, as in the classical case, every Mayer diagram diverges. However, this nonintegrable tail is
independent of the shape of the loops and iexplicitly and exactlyresummed by a generalization of the
method developed by Meerdd. Chem. Phys28, 630 (1958; Plasma Physic§McGraw-Hill, New York,

1961)], for classical fluids of point entities. Auxiliary l/bonds are introduced and subdiagrams involving
chains of I/ bonds are integrated over first in a systematic way. The new diagrams contain bonds between
loops that decay either exponentially or algebraically, withrd I#ading term, and the new diagrams are at
least conditionally integrable. The part of the quantum particle-particle correlation arising directly from ex-
change, which is derived from the density of loop, decays faster than any inverse power law, whereas, as
shown in the following papdiPhys. Rev. 53, 4595(1996], the whole quantum particle-particle correlation,
which also involves the correlations between loops, decays onlyr &5 $1063-651X96)05105-1

PACS numbgs): 05.30—d, 71.45.Gm

I. INTRODUCTION The fast growth of the fermionic kinetic energy when the
density increases is needed to balance the attraction between
The present series of papers is concerned with the equépposite chargesThe same would be true for integrable
librium static correlations in matter under usual conditions.potentials such as the Yukawa poten}i@n the other hand,
In this case, strong, weak, and gravitational interactions argonintegrable potential¢that fall off with distance as, or
negligible [3] and the electrons and nuclei can be seen agiore slowly than, 1f) usually have no thermodynamic
point charges that interact through the three-dimensiondimit. However, the long range of the Coulomb potential
electrostatic Coulomb force and obey the laws of nonrelativ90€s not lead to an explosion of the system.
istic quantum mechanics with the adequéfermi or Bosg The hgrmomuty .of the 1/ pote_ntlal is responsible for a
quantum statistics. The correlations between the chages Y'Y special screening effect, while the thermodynamic limit

(where « is an index for then, various speciésare to be [6] (see Sec. )lexists for systems in which a local neutrality

determined in the framework of quantum statistical mechanS2"! be realized in the bUIk.’ _though the hgrmomcny Is prob-
) . : . - : ably not a necessary condition for the existence of the ther-
ics with the pair potentiak,e,vc(r)=e,e,/r (with r the

. t L modynamic limit[7]. At equilibrium, the local distribution of
distance between the particleSThe pure It behawor IS articles is sufficiently neutral and isotropic so that, accord-
subtle 0 be handleq at both short and Iong d|st'ances. T ?lg to Newton’s theorem, the electrostatic field vanishes in
short-range singularity would lead to an implosion of thethe bulk. At a macroscopic level, this is exemplified by the

system if all the negative charges, in the present case tr]8 ; - o 4
. . - cal neutrality relation between the densitjgsof the vari-
electrons, did not obey Fermi statistif4,5] (see Sec. ) y

ous species
*Present address: Laboratoire de Physique, Laboratoire associe Ea: €,Po=0. 1.7
au CNRS, Ecole Normale Suiperieure de Lyon, 46ealiitalie,
F-69364 Lyon, France. This local neutrality also appears if the force decreases faster
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[8] or slower[9] than the Coulomb interaction and if the change effects into account systematically can be built by
state is invariant under some translation group. At a microanalogy with the usual Mayer diagrams of classical fluid sta-
scopic level, the distribution of particles of speciésaround tistics[13,14]. The diagram divergencies that are associated
a chargee, is described by the particle-particle correlation with the nonintegrability of the Coulomb potential are dealt
pﬁif,T(r) and Coulomb screening means that any charge  with by means of an exact global resummation, which is
the bulk is surrounded by a polarization cloud with a totalanalogous to that performed for classical plasmas by Meeron
charge exactly equal te-e,, [15,2]. Some arbitrariness lies in such resummations and the
@7 choice made in the present work is aimed to exhibit the ex-
Paar (1) ponential screening of charge-charge and multipole-charge
f drz €ar Pu =~ (1.2 interactions and the A7 tail of the partially screened
¢ multipole-multipole interactions. Indeed, in paper I, the re-
Subsequently, the total effective potential created by summed diagrammatics are used to show that the quantum
charge and its cloud at large distances is no longer the bagarticle-particle correlation decays as®land to display
1/r Coulomb potential. Moreover, the induced charge den<learly how the spherical symmetry of the interaction and of
sity in the presence of an extern@lassical infinitesimal  the quantum fluctuation distribution for one particle, together
charge is exactly related to some charge distribution functiomvith the harmonicity of the Coulomb potential, enforce this
through the linear response theory and Bg2) implies that  power law. Besides, the Mayer-like diagrammatics allow one
the total induced charge is finite in a classical as well as in 4 exhibit how the exponential classical macroscopic screen-
quantum plasma, in a conductive as well as in a dielectriégng makes the power law 19 for the particle-particle corre-
phase. Moreover, a Coulombic system in dimension 3 is altation fall off to 148 and 1f° for the induced charge density
ways in a conductive phase, so that the total induced charggnd the charge-charge correlation, respectively. Ultimately,
around an infinitesimal distribution of chardig(r) exactly  this formalism provides low-density expansions for weakly

compensates the infinitesimal total external charge degenerated quantum systems and, in particular, for the co-
efficient of the previous t? tail, as shown in another paper
ind, .\ _ [16].
f dr% €aPa (1= f dr aq(r). 13 The program is achieved in the grand canonical ensemble

by using the Feynman-Kac formula to represent the matrix

According to the linear response theof%,3) implies a sum elements of the imaginary-time evolution operator in terms
rule for the second moment of the charge-charge correlationf Wiener functional integrals. The complexity due to the
function in the classical casfgl0] (Stillinger-Lovett sum- noncommutativity of the quantum operators for point par-
rule) and for some response-functiGnverse static dielectric ticles is replaced by that of performing path integrals, but
function), which is indirectly linked to the charge-charge meanwhile the exponential of the Hamiltonian of the whole
correlation, in the quantum ca$gl] (see Sec. IY. We no-  system is factored out into a product of scalar exponentials;
tice that the screening rulé€$.1)—(1.3) are compatible with a if the quantum particles interact through two-body forces,
sufficiently fast algebraic decay of the correlations in plas-each of these scalar exponentials only involves either a two-
mas in the classical as well as in the quantum ¢as¢ body potential or the squared distance between two particles

The point of the present series of papénereafter re- that are permuted with each other under a cycle. The quan-
ferred to as the present paper and papeslio show that the tum system of point particles proves to be equivalent to a
particle-particle correlation function in a multicomponent classical fluid of “filaments” with Brownian random shapes
plasma does have arffail, when the statistics is taken into that describe the quantum fluctuations. This point of view is
account and the interaction is the pure Coulomb potentiainteresting in at least three respects. First, from a technical
(without any regularization Moreover, the induced charge point of view, the difficulties associated with the noncommu-
density in the presence of a localized external infinitesimatating operators are circumvented and methods of classical
charge and the charge-charge correlation are shown to decatatistics can be adapted to the quantum ¢ask7—19, as
as 1t% and 1f1° respectively. A review of the previous Ginibre did in order to show that low-density expansions of
works about the precise question of these decays is posthermodynamic functions are convergent for some class of
poned to the Introduction of paper Il. The standard perturbaintegrable potentials. The reduced density matrigesntum
tion many-body theory proves not to be very helpful for theanalogs of the classical Ursell functionsere expressed in
investigation of these tails in multicomponent plasnias terms of scalar functions and the algebraic formalism intro-
detailed in the followingand in the present paper we build a duced by Ruelle in the classical case could be transposed to
formalism in which the Feynman-Kac formyla2] is used to  the quantum system. Second, the Feynman-Kac representa-
write the grand partition function of quantum particles as thetion provides helpful insight in mechanisms involving quan-
Maxwell-Boltzmanmgrand partition function of “exchange” tum fluctuationd20-22. For instance, since the extent of a
loops interacting through @wo-body potential, in a way filament is proportional té, the equivalence is convenient to
slightly different from the formulas obtained by Ginikr&]. build diagrams that givé expansions for the semiclassical
This paper allows one to calculate the quantum correlationsegime in a more systematic way than the usual Wigner-
in terms of the density of loops, which is directly linked to Kirkwood method[20]. Third, the equivalence is useful to
exchange statistics, and of the correlation between loopslisentangle easily the effects of quantum dynamics from
which is induced by interactions. Since the loop distributionsthose of quantum statistics. A particle that is not exchanged
can be derived as functional derivatives of their classicalvith any other one in a given density-matrix element is as-
grand partition function, diagrammatics that take the exsociated with a closed filament, whergagarticles that are
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permuted with one another under a cyclic permutation arg8=1/kgT. In the integral corresponding to a given diagram,
described byp open filaments. Then two approaches can besach internal point is associated with a measfice”

investigated. In the methods used previously for plasmas, the 2’;52 12;= JARSD(X) and a weightz( %) [p(¥)] for the
exchange effects were treated perturba_tively with respect to Bop-fugacity[loop-density expansions. The diagrams can-
reference system with Boltzmann statist{@3-27. In the  not be calculated explicitly at finite loop fugacifdensity
point of view chosen in the present paper, the open filamentgecause the weighzt, ,(X) [p,,p(X)] of each point is a com-
are collected intqclosed “exchange” loops[1]. plicated function of the shapé of the exchange loop, which
The picture that arises from our approach can be summeghn be calculated only perturbatively. At large distances
up as follows. A loop¥ is characterized by its positioR  the potential between the loops behaves as thinféraction
(the position of one of the particles involved in the Ip@md  between the total charges of the lodfise total charge of a
its internal degrees of freedom. The latter are the specafs loop is the sum of the charges of the corresponding par-
the corresponding particles, the siz®f the loop(defined as ticles). As in the classical case, every Mayer graph diverges
the number of particles exchanged under the correspondinigecause of the nonintegrable long range of the Coulomb po-
cyclic permutatioin and its shapeX (the positions of the tential. By taking advantage of the fact that the asymp-
other particles and the random Brownian paths that connedotic behavior of the potential does not depend on the shapes
them together The fugacity of a loop contains a contribu- of the loops, these tails aexplicitly and exactlyresummed
tion that describes the exchange in an ideal gas and a conttdy a generalization of the method developed by Meeron. The
bution from the self-energy of the loop. Moreover, the loopauxiliary bonds(which are introduced in the process in a
“fugacities” in the present formalism are not necessarily partially arbitrary way are chosen to exhibit the decomposi-
positive; for fermions, the sign of the loop fugacity dependstion of the loop potential into charge-charge, multipole-
on the number of particles involved in the loop. The self-charge, and multipole-multipole interactions. The subdia-
energy of a loop is positive and the absolute value of thegrams involving chains of L/bonds are integrated over first.
fugacity of interacting loops is lower than for noninteracting The corresponding collective effect ensures that the charge-
loops.(The interaction between identical charges is repulsivecharge and charge-multipole interactions are exponentially
and tends to reduce the importance of the exchange effectsscreened, as in the classical case, with a screening length that
In the potential between loops, each line element of a loopcoincides with the classical Debye-ekel value when the
with a curve abscissa, interacts through the Coulomb po- exchange effects become negligible. However, the
tential only with thep’ line elements of the other loop of size multipole-multipole interaction is only partially screened and
p’ whose curve abscissd differs from 7 by an integer(In  the corresponding Mayer bond decays algebraically at large
dimensional units, the corresponding imaginary time runglistances, with a dipole-dipole-like leading term. Subse-
from O to pB#.) Thus the multipole-multipole part of the quently, the loop correlation decays as>*Lvhile the loop
forces between the loops is different from the electrostaticlensity falls off faster than any inverse power law when the
interaction and is not exponentially screeregriori. The  distance between the positions of two particles involved in
distribution functions for the quantum particles are derivedthe loop becomes infinite because of the part of the loop
from the distribution functions of the loops by integration fugacity that comes from the exchange in vacuum. Eventu-
over the internal degrees of freedom. The density of thally, the part of the quantum particle-particle correlation that
guantum charges is obtained from the density of loops by @merges directly from exchange decays faster than any in-
summation over the various sizes of loops and an integratiomerse power lawmexcept in a phase analogous to a Bose
over their shapes. The part of the particle-particle correlatiowondensation, where the correlation tends to a finite constant
that comes from configurations where the two consideredalue plus fast-decaying correctionés shown in paper I,
particles are exchanged within a cycle appears as a contribthe part of the particle-particle correlation arising from con-
tion from the loop density integrated over its internal degreedigurations where the particles are not exchanged together
of freedom except two particle positions; the part of theunder the same cyclic permutation behaves a$ 4t large
particle-particle correlation built by configurations where thedistances.
particles are not exchanged together comes directly from the The existence of the f7 dipole-dipole-like interaction be-
loop correlations. Though the two-body potential betweertween the charges surrounded by their polarization clouds
loops with sizesp and p’ corresponds in fact to a can be traced back in other formalisms that go beyond the
(p+p')-body potential for the corresponding exchangedmean-field approach. This interaction appears in some inter-
guantum point particles, the loops obey classical statisticenediate quantities that we call “chain potentials,” because
and interact through &wvo-bodypotentiale e ,-v (%, %") be-  they are obtained by summing chains of auxiliary bonds with
tween objects with an internal structure. the aim of taking into account the collective effects that par-
As a consequence, in order to get expansions in powers ¢ially screen the large-distance Coulombic tails of the corre-
the fugacity or of the density of loops, the usual techniquesponding bare potential. For instance, in the standard many-
of Mayer diagrams for point entities can be generalized tdody theory, the chain potential is the random-phase
the system of loops, though the latter is made of objects witlapproximation effective potential. Other examples in the ap-
various internal degrees of freedom, nameétyp,X), which ~ proximation of Maxwell-Boltzmann statistics can be found
interact through a potential involving not only the distancein Refs.[21, 25 and its classical analog is the Debyédkal
but also the internal degrees of freedom. Each point of thgotential. At finite temperature, the resulting chain potential
Mayer diagram is associated with both the position and théas a short-ranged part and a long-ranged part that decays
internal degrees of freedom of a loop. Two points are linkedalgebraically. The first model of quantum plasma to be in-
by at most one bond =exd —Be e, v(¥%,%")]-1, with  vestigated was the one-component plag®&P), also called
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the “jellium”; it is a system made up with identical point and the part of the correlation arising from exchange statis-
particles that move in aontinuousuniform fixed back- tics is shown to decay faster than any inverse power law. The
ground of the opposite charge that ensures the local neutraechnical lines of Sec. V are summed up at the beginning of
ity (1.1). In the particular case of the OCP, where the particlethe section. As a conclusion, the exchange loop formalism is
and charge densities are proportional to each other, two sul§ompared with the standard many-body perturbation formal-
sequent exact sum rules allow one to show that an algebrai€m in Sec. VI. In Sec. VI A the general structures of both
falloff of the basic graphs of the standard formaligmoper ~ diagrammatics are compared and the linear response that
polarization graphsmight lead to an algebraic falloff of the 9ives the indirect relation between the induced charge den-
particle-particle correlatiofif compensations do not ocur sity and the quantum parucle_—parucle correlation is recalled
However, in the case of multicomponent plasmas, these rule@r a multmomponent plasmain .the standa(d many—pody per-
do not hold and one cannot iterate the arguments that can %rbatmn theo.ry. In both formahsms, the dlagram d|ve'r.gen-
developed for the OCP. Eventually, the point of view of theCles that are linked to the Iarge-dl_stance nonlntegrabl_hty of
Feynman-Kac representation proves to be the most adequeHée Cou!omb potenfual are dealt with by an e>_<act paf“a' re-
one for the investigation of the large-distance behaviors opummation of subdiagrams that aré Kinds qf mteract.lonl-lme
the correlations and induced charge density in a muIticomQhamS (Sec. VIB. The corresponding chain potential in-

ponent plasma. In particular, it allows one to study the Coef_volves an algebraic part, but the consequence of the large-

ficients of the algebraic tails at low density, as shown indistance behavior of the quantum particle-particle correlation
another papef16] ' can be investigated in the standard perturbation theory only

The paper is organized as follows. In Sec. Il A we recall” the case of the one-component plast8ac. VI Q.
known results about the stability of Coulomb systems and
the existence of the thermodynamic limit of the quantum Il. GRAND CANONICAL ENSEMBLE
grand partition functionZ. The distribution functions are
introduced in Sec. Il B. In Appendix A we show how, for a ) . )
Hamiltonian independent from the spin, the notion of “ex- N this series of papers we consider systems made; of
change loops” emerges from the fact that any permutatiorfPeciesa of point chargega=1,...ny) in an infinite volume.
can be expressed uniquely as a product of cycles with n&et N, be the number of charges of speciesThe particle
common elements. The Feynman-Kac formula then leadith indexi (i=1,....X,N,) has a charge,,, a massm,,,
straightforwardly to the equality betweéf and the grand and a spin numbe$ai. Its quantum state is characterized by

partition function of a classical gas of exchange loops interits positionr; and the projectiomiS% (i) of its spin4S,,

acting via a two-body potenti@Sec. Il A). In Sec. 11l B we . . 2
give a compact formulation of the equivalence, which is par-210"9 @ given axisz (S, can take the 3, +1 values

ticular to the present work. A multipolar decomposition of ~Sa;: —Sy*1....5, and# is the Planck constantThe
the loop potentialSec. Ill O shows that the difference be- charges interact through the Coulomb pair potential
tween the loop potential and the electrostatic potential beeaieajvc(rij)=eaieaj/rij (with rij=|rij| andrj;=r;—r;) and
tween charged Ioops appears only i.n the_multipole—multipolqheir quantum Hamiltonian operatér{N | in position repre-
part of the interaction(This remark is valid for any poten- ! @

tial.) In Sec. Il D the distribution functions of the classical sentation reads
loops are rewritten in terms of functional derivatives of the
grand partition= with respect to the fugacities of the loops, |Z|{N }:E (
by means of formulas analogous to those encountered in @« i
classical statistics. The correspondence between the quantum

system of point particles and the classical system of loop§&irst, we recall some results about the canonical ensemble.
allows one to relate the distribution functions of the quantum The stability of matter with respect to an implosion that
particles to those of the exchange log@®c. IV A). These would be induced by the strong rl/attraction between
general formulas are checked in the noninteracting (@se.  charges with opposite signs is a subtle question. For a system
IV B). The theory of linear response to an external statigvith a finite number of particles, the Hamiltoniéa.1) has a
charge distribution is displayed in Sec. IV C: the inducedfinite lower bound[28] (and, in particular, the atoms are
charge is written in terms of the loop distributions and thenstable. The uncertainty principle arising from quantum dy-

in terms of the charge-charge correlation function. In Sechamics ensures that a localized particle has a large kinetic
IV D two sum rules describing Coulombic screening are de-energy that balances the attractive potential energy and this
rived in the present formalism. The finiteness of the totalprevents any finite set of charges from collapsing together.
induced charge allows one to retrieve the zero-moment surhienceforth, at the inverse temperatye 1/kgT, the canoni-

rule that is obeyed by the charge-charge correlation accordsal partition function of the system confined in a box of finite
ing to (1.2); moreover, it implies the positiveness of an ex- volume A,

pression that involves the zero moment of the part of the .

correlation directly induced by quantum statistics. The per- Q(B. AN A)=Tr, e PHing, (2.2

fect screening sum rul€l.3) specific to a conducting phase

is given in terms of the second moment of the charge-chargis finite. In(2.2) the trace Tr is taken over a basis of quantum
correlation plus a quantum correction involving the loop dis-states that are symmetriantisymmetri¢ with respect to the
tributions. In Sec. V we introduce the virial diagrams for the permutations of thé\ , particles of the same boson(fermi-
system of loops, the Coulomb divergencies are resummeapnic) speciesr. The wave functions vanish on the wall of the

A. Stability and thermodynamic limit

_ﬁ2
2mai

€4,Ca,

Ao S 2.

i) Tij
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box (Dirichlet boundary conditionsand the trace Tr depends whereN,, runs from 0 tox. Regardless of the choice of the

on the shape and on the sizeof the box. Moreover, if there chemical potentialg,, of the various species, the non-neutral

is no collapse in the thermodynamic limgtability of bulk  systems in2.3) make a vanishingly small contribution to the
mattep, the energy per particle must have a lower bound andjrand canonical pressure and the densities of the various spe-
this bound must be independent of the positions of the pareies that appear in the thermodynamic limit obey the neutral-
ticles and of the siz&, N, of the system. This is the so- ity requirement(1.1). Moreover, in the grand canonical en-
called H-stability condition Hin,>—BZ,N,. Dyson and semble, a finite density of charge in the infinite volume limit

Lenard[4,5] showed that, thanks to the Pauli principle, the c@nnot appear because the self-energy of the corresponding
fermionic kinetic energy increases with the density suffi-Surface charge becomes infinite and its contributio®ts
ciently fast so as to compensate the Coulomb attraction erxponentially small. _
ergy between opposite charges and thestability requires We mention also the rt_asults about t'he OCP, where there is
all species with negative and/or positive charges to be fermionly one species of moving charges immersed in a continu-
ons. This condition is met in real matter where all the nega®us uniform fixed background of the opposite sigts clas-
tive charges(electron$ are fermions. The density of free sical version is a model for classical ions moving in the rigid
energyF ,(B,{p.))=(1/BA)In Q per unit volume may have bath made up by degenerate quantum electf@8$ The
an intensive thermodynamic limit. guantum OCP is often used as a first approximation for the

On the other hand, if the global net charge is not too |argegescription of the conduction electron fluid in a metal when
the system does not explode, in spite of the long-ranged réhe Fermi surface is nearly spherigédr instance, in alkali
pulsion between charges with opposite signs, and the Gibp¥etals and when the electron-phonon interactions are not
formalism has a proper thermodynamic limit. This was re-relevant for the phenomena to be studiad].] In the case of
markably shown by Lieb and Lebowiff] via an argument the OCP, the Hamlltpman |r_1volves the self-energy pf the
that exhibits the fundamental physical mechanisms. When Background and the interaction of the background with the
domain is packed with spheres, the densities inside thE10ving charges. Théi stability holds in the classical sense
spheres are radial because of the rotational invariance of tt&d Fermi statistics is not requird@1]. The neutral and
potential. According to Newton’s theorem, outside an isotro-non-neutral canonical ensembles have well-defined thermo-
pic distribution of charge, all the charge appears to be condynamic limits, as in the case of multicomponent plasmas.
centrated at the center. So, despite the long-ranged nature bfe grand partition function in which the background den-
the Coulomb potential, the various neutral parts of a systerity pg is fixed (so that the system is not neutral, except for
far away from each other are approximately independen@ne value ofN) exists. (The grand partition function in
and, by taking the thermodynamic limit of the Gibbs canoni-Which the system is neutral for evely diverges in the clas-
cal partition function, one gets an extensive energy and afical case and in the quantum bosonic case, even for a finite
extensive free energy together with the intensive thermodyvolume, and is finite only in the quantum fermionic case,
namic variables, such as the pressure. Moreover, if the Syg\[here the kinetic energy dominates the electrostatic contri-
tem is overall neutral, the free energy does not depend on tHeution) In the infinite volume limit, the density in the bulk is
shape of the domains used in the process that leads to tg&ual to the density of the background.
infinite volume limit, as it is the case for potentials that are According to the general formalism of statistical mechan-
short ranged. However, the long-ranged nature of the Coucs. the average value of an opera@iin the Fock space is
lomb forces has manifest consequences if the global neutragiven by
ity is not satisfied. In the canonical ensemble, if the excess
charge is both “non-negligible” and “not too large,” it goes
to a thin layer near the surface of the system and the density <()>: =
of free energy per unit volume is the sum of the free-energy A
density of a neutral system plus a term that involves the
shape-dependent electrostatic capacity. If the net charge is ol _ o
too large, the density of free energy explodes in the infinite Xex;{ ’8( Hin,) 26,: ’““N“)“' @4
volume limit.

The latter property is linked to the equivalence between
the various statistical ensemble&, which is quite particular  In the limit of an infinite volume, the thermodynamic func-
in the case of Coulomb interactions. The thermodynamidions in the bulk become independent from the boundary
properties(or intensive variablesare the same whether they terms arising from the interactions with the walls. Subse-
are given by the grand canonical ensempiich involves — quently, when considering the average val(@g), we can
nonneutral systemsor by the canonical or microcanonical take states that extend over an infinite volume from the be-
ensembles for neutral systems. Indeed, let us consider ttginning of the calculations.
guantum grand partition function of the system when a
chemical potential, is associated with each species

1

S B e 2 TrA(O{Na}

oz=l,...,ns

B. Distribution functions

E(Biut. A= > TrA{ ex;{ —,3( |Z|{N ) ~ The local density Q , (r) of the quantum particles of spe-
n « ciesa is the average value of the operator

ala=1,...) s

-2 MN)H (2.3 PalN) =2 3y 00— T). (2.5
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In the same way, the quantum truncated two-body distribukinetic pressure because it contains an extra electrostatic
tion functionpf)JQA(ra,rb) for speciesy, anda, is defined  contribution associated with the work necessary to deform
as ah the background33]. (The classical grand canonical pressure
becomes negative at low temperature, whereas the kinetic
pressure remains positiyen the thermodynamic limit(2.7)
P\ (rarp) = ; By agOa; (1= T2) (= Tp) reads

—
=
=

A

_Pga,A(ra)PSb,A(rb)- (2.6 5PS
I BHa)

=p3+ f dr pia"3(r). (210
In the following, we use the superscri@t systematically in p
order to distinguish quantities calculated with the quantum . _ .
statistics from averages obtained with the Maxwell-For a multicomponent plasmé2.10 is the usual Ornstein-
Boltzmann statistics. For a finite system, accordingte), ~ Zernicke relation. In the OCP, where there is only one spe-
and sinceN,= [ ,dr'p.(r'), one gets the same relation as in Cies of moving particles(1.2) readsfdr p®T%(r)=—p° and
classical statistics (2.10 implies thatgp?/a(Bu)=0. The latter equations reflect

the fact that, in the thermodynamic limit, the fluctuations of

c?pS’A(I’) . ., bulk density as well as the bulk density itself are determined

Wy | Ldr (Pa(N)pall’))z, only by the density of the background and do not depend on

@’ 1BA the chemical potential that is involved in the nonneutral
grand partition function[We recall that, in the same way,

_@a(r))EALdr’</3a(r,)>5,« the bulk densities in a multicomponent plasma are linked by

the local neutrality relation(1.1) and onlyng—1 chemical
potentialsu, are relevant in the thermodynamic limjiThe
ZpSYA(r)-i-f dr'p@TR(r,r’). (2.7  chemical potentiaju* that appears in the usual thermody-
A namic relations is another chemical potential, defined as the

There is no rigorous result about the existence of the ther\-/a”at'on of the free energy when one particle is added to the

. . . neutral system, while the latter is kept neutral by a corre-
modynamic limit of the correlations for Coulomb potential. .
However. the following arauments of the paper miaht ivespondmg change of the total charge of the background. For
' g arg bap gnt g instance gp®/du* is related to the isothermal compressibility

some hints for a mathematical progf. Moreover, for a quan- + that measures the response of the density to a variation of
tum two-component plasma of distinguishable and symme flhe “thermal” pressur®,, y;=(1p?)(3p%3P )|+, by the

ric opposite charges interacting through a Coulomb potentiausual thermodynamic relation
regularized at the origin, the thermodynamic limit of the cor-

relations in the grand canonical ensemble exists at arbitrary

temperatures and chemical potentig8€]. We assume that, ap° Q2

in the case of a generic multicomponent plasma with quan- Iu* =[p~1"xr- (219

tum statistics, the thermodynamic limit still exists and is in-

dependent from boundary effects. ] ] ]

The translational invariance of the Coulomb potential im- The thermal pressur®, is defined as the opposite of the
plies that, in the thermodynamic limit and in the bys@(r) ~ variation of the free energy per unit volume when the back-
is independent fronr, while p&z)Jf(ra,rb) depends o, ground is compressed together Wlt_h the moving partlc'les, o)

. a . that the net charge of the system is kept congiask. It is
andr, only througrgthe distancey,=|ra—rol- The un|forg1 equal to the pressur@.9) derived in the nonneutral grand
bulk density p; can be calculated asp;  canonical ensemble with a chemical potential*,
=limy_.(N,/A)=, and can be derived directly from the Py=lim,_.(1/BA)In E(B,u* (pg),pg ).

infinite volume limit of (1/A)INZE,,

o ) 1 4(In EA) P Ill. CLASSICAL GAS OF EXCHANGE LOOPS
pQ= lim — S =AM T 2.8
Ao N I(Bry)  Ipg A. Feynman-Kac representation

In Appendix A we show how the grand partition function

where E (2.9 can be reexpressed in terms of the classes of permu-
In =, tations with the same irreducible cyclic structugis writ-
P= lim A (2.9 tenin a basis of properly symmetrized tensorial products of
Ao B individual particle states and the permutations are expressed

) o ) as products of cycles with no common elements. Since the
is the thermodynamic limit of the grand canonical bulk pres-permytations that have the same cyclic structure are conju-
sure P. In a multicomponent plasma, the grand canonicalyated to one another by a permutation and since the Hamil-
pressure coincides with the kinetic pressure that measures thgian is invariant under permutations of the indices of the

transfer of particle momentum to the wall. However, in theparticles of the same species, the grand partition function of
case of the OCP, the Hamiltoniaty , involves the back- 3 system where the interactions are independent of the spin
ground and the grand canonical pressure is not equal to thean eventually be written as
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72128, +1)ePPra| M O (i) (S) = (1= 9)ri+Sr )+ N o &(S), (3.3
p

it

1
R =
{ng}“fj---gs no#0 Np:
=i Where)\wi is the thermal de Broglie wavelength defined as

- — 2 112 3 ; ; ; i}
XJ H dri<{r7,o(i)}|e_ﬁH{”S}I{ri}), 3.1) _)‘ai (B /mai) and & (s) is a Brownian .brldge th.at van
i ishes whers=0 and 1. Its measur® (£), which contains the

0. . ) exponential of the kinetic part of the Euclidean action, has a
where[{r })=®|r;), 7 is a composition of particular permu- 5aussian covariance

tations o characterized by the sequenfgeg} in which ng
is the number of cycles involving particles of specieg in

the cyclic decomposition ofr® and i ranges from 1 to L . , ,
2,2,png- 7, is equal to 1 for bosons and tel for fer- D(&[&(9)]1.[&(8")],=9,,,inf(s,s")[1-sups,s")],
mions. The combinatorics is identical to that found by Gini- (3.9

bre for the reduced density matrices on p. 360 of REf]. A

formula analogous t@3.1), without the spin degeneracy fac-

tor, was also retrieved by e and Stel[19]. ,
The noncommutativity between the kinetic and interactionmum] of s gnds ; 9 "

quantum operators does not allow one to reexpress For a given permutationr’, we make a partition of the

exp(— BH; ) as a product of exponentials, each of Whichvariables{ri} and order them in such a way that the new
P ) P P ’ variablex P denotes the position of a particle of species
would involve the Hamiltonian of the particles that are per-that is permuted under® inside thekth cycle of lengthp
muted within a cycle ofr°. However, according to the well- (k=1,...n%), with | changed intol +1, for I=1,...p—1
known Feynman-Kac formulgl2,34), every matrix element and|=p cphanged intol =1 under 7°. Let w®P¥ be the

in = can be written in terms of the path integral of the ex-Brownian path linkingx Pk to x4PK and £ PX the corre-

ponential ofi times a classical action with imaginary times sponding Brownian bridge. The so-calleth “loop” of spe-
t= _iIBfLS. In the path integral, the kinetic terms are disen'cies a and |ength p is the Object

where inf(s,s’) [sup(s,s’)] denotes the infimun{supre-

tangled from the interaction energies as ZRP=(a,p KX P g, o (EFPY 1 o) (see Fig. 1
A and we use the notatio( ' ¢P)=II_ [dx{"P*D(&/P)].
({ray e PReg|{r}) With every loop we can associate a fugacity
:H _2_1 e_(r‘rr(i)_ri)Z/Z)‘ii int, o ap
i (277)\ai)3/2 2 2P =25 e PR, (3.9
1
XJ H D(&) |ex —ﬁii;j €a;€0, where
xfld (S~ @) (32 -1 1 et |F
o s vel @17 ()~ @),z ()] ] : Zip= 7k (28D 5 (QTW) (3.6
o; i) (S) is a Brownian path starting from at time s=0 _
and ending at ;) ats=1, Eg“ is an internal energy defined as

FIG. 1. Potential between two exchange loops

X3 S=(a,p=3; Ri=xy {ti=xb-xi, t}
=x3—x3}, {€1.£h&5) and “;=(a;,p;=1,
R;=x1,£7), defined by the integral overand 7’
(3.13. (A bold & represents a vecta and, for
conciseness, we have denoted a pRift\ ,; & in

a loop only by\,;.) The contribution from a
given 7 =s, with 0ss<1, reads

€4,Ca, JpldT A 7—P(7)]
0

/\(”g(T:Q—I— s)

s

—[7 = P() Do (r)— Qy( 7))
3
Aoy &y (7 =80, 2, U (1+5) = y(s)

and is represented by three solid lines. The shape
& made with Brownian paths may have some er-
ratic structure and the Brownian paths may cross
themselves or each othetHowever, in dimen-
sion 3, such paths have a vanishing meagure.




apk)

e 3 o

EIE'[( :%11/, p) —

QN

o’ " (9)],

2
7”; devc[w PK(s)—
(3.7

with the conventiorx,, ;=X;. The interaction potential be-
tween the loops is

p P
(/“p,f,“ L =2 E devc[wapk(S)

—of P (9)]. (3.9

With these notationg3.1) can be written as the grand par-
tition function of a classical gas of objects P interacting
through the potential3.9),

=Fws 2] | I

{p} Sn9&0 (ap/nsﬁo

o
)

X klZ[l [z( L//z’p)ff‘(%ﬁhp)]

X exp(

WhereE’IZ'k, means that ifk=a’ andp=p’, thenk#k’.

B3 Eee DIPIN!

p.p’ kk’

(ZeP, 78,

(3.9

B. Compact formulation
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The loop #, can be described by a closed cur¢r,
which is parametrized by an abscissanging from 0 top, ,

P

QD=2 Sona@lr-(1-D]. (312
In (3.12 P(7) denotes the integral part aof [for instance,
Q(=0=w!(s=0=x}] and we set Q(r=p))
=|imerw'pl[T—(p,—1)]:w'pl(s= 1)=x}. The potential
between loop$3.8) can be expressed as

o(F T = fo"'dr fo‘”dr' 5(r—P(7)]

—[7"=P(7) Dvc[ (1) — Qy(7')].

(3.13

It is represented in Fig. 1. The internal ener@'}zt (3.7 is

the sum of two terms: the internal energy of a noninteracting
loop E%(.%”,) and a self-interaction energi . #,). The
former reads

1
Ep( ) =Ep({x}) | E<x|+1 X% (3.14

For noninteracting loops, the average extent of the clitye

i.e., the average distancpg_ ;—x|| and the average extent
of the Brownian bridge&algf , with I=1,... p,, increases
when the temperature is lowered. The self-interaction energy
can be written as

Py P
Ese(-£1)= %eifo deo d7' (1= Sp(s).pr) ([ 7= P(7)]

—[7 =P Dvci(n)-X(7)]. (.19

E can be written in an even more compact form by label-

ing a loop with only one indexl (I=1,...N with N
=372, 3p_1ng) and by using the notatiof; = ! . Ac-
cording to the identity

1 e
s 1AL e
a@=1l..ng a I’la! 1=1 7k|
{np}p 1 np¢0 p
s ﬁ dv (3.10
M=o N!' J o= "
with the notation fd %= Ea . pnzlf,’/)(,,%‘k“:'p”), (3.9
reads
o 1 N
Boop= 2 w7 | 1L [2(Z0d 7]
N=0 . n=1

€80 (%1, %) |. (311

v l
exp — B 5 2
In (3.11) we use the convention that,\f=0, there is no%,

in the corresponding term d|,,, and this term is merely
equal to 1.

The self-interaction energ¥ (%) is different from the
self-energy of a classical Ioop, which is equal &
e idrfldr [1—8(r— 1) Joc[ (7)—Q(7')], but, as
the latter, it does not contain any short-distance singularity.
Since all the particles inside a loop have the same charge and
since the potentiab ¢ is a positive function of the distance,
the self-interaction energy is positive and the internal energy
of aloop(3.7) is larger than in the noninteracting case, what-
ever the signs of the particles are. Henceforth, according to
(3.5, the absolute value of the fugacity of the interacting
loops is lower than that of the noninteracting loops with the
same chemical potential,,,

|2 2)|<|2( %) =2k e PEtD. (3.16
The weight of loops with many interacting exchanged par-
ticles is lowered with respect to its value in the noninteract-
ing case. In some sense, the repulsive interaction between
identical particles reduces the exchange effects.

The formula(3.11) can be checked readily in two cases:
first, for a system of noninteracting particles, as shown in
Sec IV B, and second, for any interacting system, in the
semiclassical limit. Indeed, whef tends to zero without
strictly vanishing, the internal energi8.7) of every loop
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with a “size” p=2 becomes infinite, because of the contri- - P, D
bution E(~*?), and the weight(~*P) becomes exponen- v( %, %) =pipjvc(Rij) + fo deO d7’
tially small. In such a regime, the exchange effects are neg-
ligible: there is no exchange loop with a sipes2, but only *
closed Brownian “filaments” #%'=(a,r £ with shapest. XS([r—P(n)]-[7 —P()])> —
In the formula(3.11), the summation ovep is reduced to its n=1 N
: — o2 (% H
flrnst term p=1 and [d¥ z(:é? is merely egual to X[Xi(7)- Vit X;(7) - V1" e(Ry),
3.5, [dr[D(&€)z, . Thus we retrieve the expression of Ref.
[25] for the grand partition function in Maxwell-Boltzmann (3.20
statistics. The latter was derived directly from the fact that
the trace in the Maxwell-Boltzmann grand partition function Where'V; denotesV .. (In the following, a loop is indexed
is reduced to diagonal matrix elements, which corresponeither by a capital or by a smalli.) At large distances, the
only to closed filaments interacting through the potential loop potentialv(£;,#;) behaves as the Coulomb potential
between the “total charges” of the two loops, as if they were
el Gt 1 point charges located &; andR;, respectively. In the fol-
v( ot gty = fo dsvlr=ry+hg &(s)—Ng,&(s)]. lowing, the “total charge” of a loop¥; refers to the sum
(3.17) pie,, of the charges of the correspondipg quantum par-
ticles of speciesy; and we use the argumeaitinstead of“;
In the strict classical limit 2=0, \,=0 and in the functions that involve only the positidR; and the
v(Zt z2Y =y(r,—r;); since [D(£§=1, the Brownian total chargepieai of the ith loop. For instance, the charge-
bridge £ disappears in the expression Sfand we retrieve charge potential between loops reads
the classical grand partition function.
For concisenefs,I we i‘r]trod_u'ce”the followingit/tew vari- ve(c; ) =pipjvc(Ry)) (3.21)
ables. We calR,=x; the “position” of the loop .4, [we
could also have chosen the centrig=(1/p)=P-,x|]. The

“shape” of the loop is The multipolar decompositiof3.20 of the potentialv can

be reorganized as the sum of a charge-charge potential
v°(c;,cj), multipole-charge potentialy™ (7 ,c;) and

| -1
X|(7')EQ|(T)—R|=§ 5P()|1{(2 | +[r—P(n ]t Cm(c,,/) and a multipole-multipole  potential
=1 ™ =1 I mm(//“/)
g &l7=P(7]], (3.19 v( %, 7)) =v°c; ,c)) +v (%, ¢ +v™(ci, %))

™%, %), (3.22

where the segmenlﬂ Jom the positions of the partlcles in
the Ioop, ti=Xj,;—x| for 1=1,...p (t,=xi1—x,) and
SP_,tj=0. The internal energff(#,) of a loop /| de-
pends only on the internal degrees of freedom that include
the speciegy , the sizep, , and the shapX, of the loop. The
integration measur¢d_%4 can be decomposed into a contri-
bution from the position of the loop and a contribution from
the internal degrees of freedofd. %= fdRfD(X) with

with the following definitions.
(@ v™ 4 ,¢c;) is the sum of the interactions between the
total charge of the loop’;, as if it were concentrated &;,
and all the multipolar moments of ordgr(with g=1) of a
charged filament that would have the shape of the 16Gp

and a charge density;(r)=/5dr 8(r— Qi(7)),

p p p p
D(X) H dx.H D(&) ﬂldt'5<|21 t.)llj1 D(&).

i (3.19 =Velec{ Zi acj)_UCC(Ci Cj), (3.23

VML )= p,f drE Xi(7)- Vil%c(Ryj)

(We mention that, in the Maxwell-Boltzmann approxima- wherev (-7 ,C;) is the classical electrostatic potential be-
tion, where there are only loops with sipe=1, each loop is tween a point chargec; and the charged closed line
reduced to a Brownian bridge with a shaglcated at, the  Q;(7)=R;+X;(7),

position of the sole corresponding quantum particle; tRen
is replaced by andX by &)

Veleck i 1Cj )= pjf d7 vc[Qi(7)—R; ]
C. Multipolar decomposition of the loop potential

In order to exhibit the difference between the loop inter- :pjf dr oy(Nvc(r—R;). (3.29
action and the interaction between classical extended objects,

we introduce a “multipolar” decomposition of the potential

v defined in(3.13. We start from the Taylor expansion of (b) The second term is similar to the first one, with the
that exhibits the asymptotic behavior wfat large distances, indicesi andj interchanged,
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. o o( A =p(a,p,Ix - , -
VoG 7= deT'E il[Xj(r’)-Vj]qu(Rij) p(L)=p(a,pAXi}i=1,. . p» 1€hi=1..p)
0 g=1 O

p p
=2 8a,.a%, pl1 94-x) 11 o8- 4&).

=Velec Ci :'%})_UCC(Ci :Cj)- (3.29
(c) The last contributionn™ (%}, %) is the sum of the (3.30

interactions between the multipolar moments of order
(g=1) of every infinitesimal line element of the cung;
with parameterr and the multipolar moments of order
(q'=1) of the p infinitesimal line elements of); with pa-
rameterr’ such thatr— P(7)=7"—P(7),

We notice that, in the case of fermions, since the sign of the
weightz(.%) depends on the size of the loop according to
(3.6), p(¥) is expected not to be positive for evepy as is

the case for noninteracting fermiorisee Sec. IVB The
correlation p?7(#,,#,) between the loopsZ, and %,

3 o b with «:Za=(aa,pa,{xf‘},zly,.”pa, {gf‘}H,_”,pa), is the trun-
v, 2 = fo deo dr' 8((7—P(7)] cated average of the two-body distribution operator
= F 1 p P Lo, L)+ p(La)p( L)
(7PN X ]
a=1qg'=1 Q' q: a | a
, =2 Oay a0y, ,pang,pr o4 =X7)
X[Xi(7)- V190X (7") - V19 ve(Ry)). 17 =1
(3.26

Pp Pa Pp
< IT 604, —xIL sd—-& 11 o8 —&)
This part of the loop interaction has no classical interpreta- I'=1 =1 I'=1
tion because, in electrostatics, any infinitesimal part of a (3.31)
charged line interacts with every infinitesimal line element of
another charged curve. Indeed, the electrostatic potential be- According to (3.10 and (3.11),

: Eloop Can be seen as a
tween classical loops reads

functional ofz(%), where each loop4, has a weigh(.%)).
Thus the distribution functions of the loops can be derived as

Vel Zi 1 %) = fpidepdeva[Qi(T)_Qj(7./)] fu_nctional derivatives of the grand partition functi@,q,
0 0 with respect t@( %),

= drfdr’ai(r)o-(r’)vc(r—r’). oo 8n Eoop)
f : p(£)=2(7) @) (3.32
(3.27
and, for £, # %y,
From the Taylor expansion @8.27), we derive a multipolar
decomposition 0b ¢ analogous ta3.22), . 82(In 2)
PPN Ly, L) =2 LU L) <o —.
Dete L1 ) =0%5(C; 16+ O™ L 0y +0oT(C, ) PELZNNATD | g
+ogel % %), (3.29 g .
Because of the noncommutativity of the operatp¢s) and
with H, such functional relations do not exist in usual other for-
malisms describing a quantum system. They allow one to
P P 11 build Mayer-like diagrams, as shown in Sec. VI.
oo ,U%j)zfo drfo dr’ Zl > T
AL IV. QUANTUM PARTICLE VERSUS EXCHANGE LOOP
X[Xi(7)- Vi19X(7)- V19 ve(Ry). DISTRIBUTIONS

(3.29 A. Density and correlations

The density operatqy (r) (2.5 for the quantum particles
The ‘diffyerence b?“,’ve?” the potgntjajsan(rjnrzrj]elect is just of speciesa c)e/m FE)e e%?és)s(edsgs eitherqa sum O\F/)er the par-
v(Zi, 7)) Vet i L)) =00 L)) “veeed Zi %)) ticle indicesi or a double sum over the loop indiceand the

As a final remark, we stress that the above decompositiong,gdices| of the particle variablex!. The analog 0f(3.30

are independent from the particular form of the two-body,eads

potential between the quantum point particles.

P
D. Loop distributions ;’a(r):Z O, ,alzl S(xj—r). (4.9

The densityp( %) =p(~£*P) of loops of species, sizep,
“located” at x; and with a shape({x—x}_, , A comparison of(3.30 and(4.1) gives the relation between
{&h-1,..p) is the average of the operator the particle- and loop-density operators



4572 F. CORNU 53

@ P P p p
pu=3 [T a3 ao0-0 [ TLD@H7N o1k b>—2 S oy H [ ax [ 11 pe&)
p=1 J i1 =1 =1 =1

p—l

% p p p’ p’
=lepf|H2dx|f|HlD(@p(%ﬂy*’)lxl_r. 4.2 xf I dx(,f I o)

1"'=2 I"=1

The last equality in4.2) is derived from the invariance of X p&T(geaP grap Py o,
p(£%P) under any cyclic permutation of the positionsx; . e
In the infinite volume, the average density of loops

p(£*P)=(p(#*P)) depends only omp—1 independent po- = 2 2 papbf D(X )f D(Xp)
sitions x; and p Brownian bridgesg, p(2*P)=p, ,(X). Pa=l Pp=1

Thus the density of quantum particles can be deduced from p(aZ)Tp " pb(rab.xa,xb)_ 4.7)

the density of loops by

» Indeed,p@T(£%aP @ P} is invariant under any cyclic
pAN =2 pf D(X)pqa,p(X), (4.3  permutation of thep positionsx, or the p’ positionsx|, .
p=1 Moreover, in the thermodynamic limit, the bulk correlation
between two loopsZ, and %, depends only omp,+ p,—1
independent positions and,+p, Brownian bridges,
P(Z)T('—%/a!»Z/b):pgz?:rpa;ab,pb(rab;Xarxb)-
Equations(4.5 and(4.6) imply that

with the notation of(3.19.
In the same way, the two-body distribution operator is
written in terms of the loop indicesas

D Bai o, By 11— Ta) ST = Tp)
E I SO f dr p<2>TQ<r>—E p(p—l)f D(X)pap(X)
=1
= By ap e Oy 2 (X —Ta) 8(Xjx—Tp)
arh I#I* I J' dr P(Z)TQ|nonexcf(r)- (4-8)
+> Sa; ayOa;, abE S(xi—ry) 2 5(X|*—rb) By using (4.3, (4.5, and the Orsntein-Zernicke relation
I#J I*=1 (2.10, we get the identities
(4.4)

pzl p? f D(X)pap(X)=p2+ f dr pT Y exerl1)

The first term on the right-hand side ¢4.4) comes from
particles that belong to the same loop, whereas the second
term is the contribution from particles that are in two differ- 3PS
ent loops. As a consequence, the correlation function of two - (;(,3,%)
particles(2.6) can be written as the sum of the contributions

from configurations where the particles at the two considered 270
positions are either exchanged or not exchanged within the f dr pia ~|nonexchfa)-
same cycle, 9
p(aza)‘;l'bQ( ab) = 5aa abpaaa Qlexc}"(r b)+pa JQ|nonexcl(rab) _ )
(4.5 B. Noninteracting system
. For an ideal gas, the contributions from the noninteracting
with loops are factored in the grand partition functi@?11)
© P P
pf;TQ|exd{rab):gz pf I1:[l dx,J’ I];[l D(&)p(£*P) Eo(ﬁ,{ua},/\):ex;n( fAd,%’ Zo( %/)). (4.10
Moreover, the internal energ§B.7) of free loops does not
X 3(X1—Ta) 2 8(Xjx —X1—Tap) depend on the Brownian paths, so that
I*=2
" ng p
BEQ({x1})
=p§=)2p D(X)pap(X) fdfzo(/) 2 E Zo o H dx e AEs 1;[1
p *
X f D(§). (4.11
X > 8| rap— 2 tl) (4.6)
I*=2

The measureD (§) is normalized tofD(£€)=1. In order to
and perform the integration over the variablegs, we use the
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change of variable€3.18 t,=x, ;—x, (with the convention

4573

We recall that, in fact, the integral i#.16) is to be under-

Xp+1=Xy) and the Fourier representation of the Dirac distri-stood as the limit of a sum over the discrete quantum wave

bution

lim — H dx,e BERDaD

A

iisd ol

:f <2d:)a[<2mi)3’2eXikz’zlp. (4.12

\2k?/2 is equal toB times the kinetic energy’(k) of a free

particle with momentunk. According to the definition of

p (3.6, IlmA_m[In(Ho)/A] involves the ser|e§ _(1/

numbers. Indeed, in the case of bosons, when the tempera-
ture is lower than the Bose-condensation critical value,
n,=0 and the density must be written as

pR=p ‘}’G+(2sa+1)|imf n9(K; B, 11, =0),

o) e<i (2m)°
wherep?%; is the contribution from the ground stdte5].

The correlatlon function between the noninteracting loops
vanishes

p(z)To(;%/,;Zﬂ!):O, (41&

p)[77 eBlug—€ (k)]]p This series is convergent for the wave as can be checked by usiri8.33 and (4.10. According to

vectorsk such thate(k)>pu, and the value of the sum is

given by analytic continuation for ak’s. Thus we retrieve
the usual formula for the pressui@9) P, of free particles in
an infinite volume

1 s
Km:o:z (2S +1)J Za7

BPo= lim — 74)
A—o
X In(1— 7,€8Ha= <]y, (4.13

The density of noninteracting loops, obtained fr(3r32

and (4.10, is equal to the loop fugacity, as in a classical

ideal gas of point particles,

pY( ) =2°(2). (4.14

For fermions, the sign o5°( %) depends om, as is the case
for the sign ofzjk’p (3.6). The density of free quantum par-

ticles is given by(4.2)

o P P
=2 pz, f [T dxe#Eata) f [1 p(&).
p=1 =2 =1
(4.15
Since onlyz}, , depends onu, in (4.15 anddz}, ,/9(Bu.)
= pz’;’p, it can be checked, by compariig.11) and(4.15),

thatp2?is directly deduced from the expressigh13 of the
pressionP, by the usual thermodynamic relati¢®.8)

J00— d(BP) _
* IBHra)

dk
(28114-1)] (ZT)Sna(k). (4.16

n%k) is the occupation number of the state with quantum

numbersa andk,

eBlia—eo(K)] 1

n%(k)=

1— 7, ePlra— W] gBleg—pql

“ (@17

(4.5), the correlatiop 2)T9(r ) between free quantum par-
ticles is reduced to the contribution from the density of non-
interacting loops of the same species. In other words, the
correlation in an ideal quantum gas contains only the purely
statistical exchange term

P 2TOE a0) =80 P29 e T ) (4.19

and, according t@¢4.6) and(4.14),

naeﬁﬂa ) P

Plaa 2T ap) = 7(2S, +1>2 (m

X E H dt, s (rab—ll*Ell t,)

p p
= 2
X&( rab+|:2|* h)ex;{ in ;1 t| )
(4.20

The Fourier transform representations of the Dirac distribu-
tions are used to perform the integration over the variables
t;, with the result

dk : dk’
(2)TOQ — —ik-rg
Paa (rab) 7]01(28&_’_1)";0 (2,”_)3 € bf (2,”_)3

*° p

Xe—ik'.rabE 2 [nae[ﬁ#a—(xilz)kﬁ]ﬁ—l
p=2|*—p

X[ nae[B,ua—()\i/Z)k’z]]p—l* +1

=9,(2S,+1) e K Tap

(2m)®

o0 2
xS [%eﬁmae&k)]]q) _ .21)
q=1
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The last equality in(4.21) is obtained by exchanging the + fdr’sq(r')=ie, UC(rI_r ), wherer; is the position op-

*
order of the summations ovep and I* and changing g ator of theith particle. The integrand involving the Brown-

pfl*+1 intoq andl*—1intoq’. The sum of the series over pathsw, ¢ in the Feynman-Kac formulé8.2) is multi-
q is merely equal toy, times the occupation numbef(k) plied by '

(4.17). Eventually
1
ex;{—ﬁj dr’sq(r’)> eaf dsve(@yqni)—r') |-
i ‘Jo '

2

P 0T ap) = 74(2S,+1) e kranO(k)

(422  Subsequently= ., is changed intdE{0,, where the Boltz-
mann factor 0f(3.11) is multiplied by exp[- 8h®*Y with

(2m)°

The integral in (4.22 is the well-known off-diagonal

matrix glement of the Qne—body density' matrixO for a non- ﬁext:J dr’éq(r’)j dZ e, p(£")

interacting gas. It is equal to limy_G_(rap,S)

=f[dk/(27-r)3]exp[—ik-rab]ng(k), WhereGg(rab,s) is the D’

free single-particle Green’s function of the standard pertur- Xf dr'v[Q'(7")—=r"], (4.29

bation many-body formalismisee(6.1) in Sec. VI|. As al- 0

ready mentioned previously about Ed.16), in the Bose-

condensatlon phase the integral okemust be written as where p(#”) is given by (3.30. The induced density of

pos+lim L of ccp - - loopsp™i( )= (p( /)>~e><t —{(p( 7))z 0, €8N be derived by
Since the nomnteractlng loops are not correlated, accorcthe usual linear response theory for classmal systems

ing to (4.18), the corresponding Ornstein-Zernicke relation

(4.9 in terms of the free loop density reads

P2 = = BL(P( D) Nexd = (H(2))(Neyd]

g ) 0 el [pallPXo
3,07 ] D00 )= g < g =g [ ar'sar) [ 7 e, 12502
(4.23
G ~ ! P’ ’ ’ ! !
wherex? 1 is the isothermal compressibility of the quantum —(p(D))Np(~ ))]fo dr'v[Q'(7")—r"].
ideal gas.
(4.25
C. Linear response to an external charge According to the definitions (3.30 and (3.3,

(P(AP(L))=(p(2)) (p(L")) =81, p(£) +pPT(,

%"). By using the relatiori4.2) between the particle-density
and the loop-density operators, the induced charge density in
grand partition function (2.3 is changed into Hiny the quantum system is found to read

When an infinitesimal distribution of chargéq(r) is
immersed into the system, the Hamiltoniafyy , in the

3

E e r>=—/3fdr'5q<r')[2 22 p ><>pap<><)f dro[r+X(r)—r']

+2 e ea,de Z pZ D(X) fD(x )P o (= RXX)

p=1 p'=1

Xfp’dT’U[R’-FX’(T')—I"]]. (4.26
0

In order to handle concise formulas, we will distinguish a funct@n from its Fourier transform only by their arguments,
g(k)=/dr exp(ik-r)g(r). The Fourier transform of the induced charge density is

b eapadQ<k>——ﬁéq<k)vc<k>|E 23, | D000 [[are X0

+2 e e ZpZ D<><>JD<X'>pfi,Ta.p,<k,x,X’>f"'

dr'e kX' (7t (4.27
a’ p=1 p'=1 0
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Formula(4.27) can be reexpressed in order to make thecurly brackets in4.32 starts at the orddk|. In this expan-
charge-charge correlation function appear. Since, accordingjon, the contributions fronp=1 andp’=1 correspond to
to (3.12, X(P(7))=Xp(;+1—X; and [idr exdik-X(P(7)] Maxwell-Boltzmann terms; since X(7) reduces to
=1, we write N &(7—P(7)) in these contributions, the rotational invariance

enforces them to be proportional to even powerg times
. (s Feynman-Kac integrals, which also dependfobut are not
|*§—:2 el i) = _1+J dr ek X, (4.28 completely canceled whet goes to zerdbecause the par-
ticle in the loop withp=1 is not involved in any exchange
Thus, according t@4.3), p,, ,(—X)=p, ,(X) and the Fourier cyclic permutation On the other hand, the exchange statis-
transform ofp(2)TC|,.HT) (4 6) is found to read tics generate contributions that vanish exponentially when
tends to zero because of the exchange E@r(3.14) of the
2)7TQ o °° internal energy of a loop witp=2. [The factor exp—,BE%)
Paa lexclK)=—pgs+ Z pJ D(X)pa,p(X) in the loop fugacity(3.5) survives in the loop density, after
p=1 renormalization of the long-ranged divergencies of the Cou-
p _ lomb interactions, as shown in Sec.]\For instance, at the
X JO dr e ' XP), (429 order|k[? the second term in curly brackets(#32 is equal
to

If k=0, we retrieve the identity4.9). The charge-charge
structure factor of the quantum particles of the medium_ X f dr A k- p
(slightly improperly called charge-charge correlation in the ;e z P X)Pap(X) T &p(n+2(r=P(7))

following) is defined as 1
X[K-X(P(7))+ 3N K- Ep(ry+1(7—P(7))]. (4.33

Q)= E E €,8,[ 04, WPl r)+p(2)TQ(r)] If p=1, X(P(n)=0 and the contribution from the loops with
(4.30 p=1 is proportional to\ 242 with a coefficient that remains
' finite when# goes to zero. On the other hand, the loops with
p=2 generate terms that may be proportional only:tbut
are exponentially canceled whéi] vanishes, as are all the
i b . terms with p=2, because they involve, ,(X). A similar
CUk)=>, e3>, pf D(X)pa’p(X)f dr e 'k XE() structure appears in the term of ordktg due to the loop
a p=1 0 correlations in the correction ©©6°(k).
o s Usually, the induced charge densi®.32) is written in
+> e, e, E p> p D(X)J’ D(X") terms of the quantum static response functiqr)

« o =[5dt C(r,t), where C2(r,t) is the quantum retarded
charge-charge correlation function in real timewhich in-
volves the average of the commutator of the charge density
Therefore, the induced_char_ge deng#y27) is related to the ;piﬁ%g(k);r;qe(l) _tE'eBU Cs(tl?)tg t(Llnjaro) reﬁ_ph(?gserelar_eads
charge-charge correlation via -

tion is valid at zero as well as finite temperature. At finite
temperature, the retarded charge-charge correlation function

and its Fourier transform is given l¢.5 and(4.29

= p =1

XpP L (kX X). (4.31)

5 (k) E €, '”dQ(k) C%(r,t) is related to the time-ordered charge-charge corre-
q lation function in imaginary timeC $(r,s). [s is the dimen-
o sionless real variable of Sec. Il ®<s<1) andC‘T?(r,s) isa
= —ﬂvc(k){ CoK)+ D eiz pj D(X)pa,p(X) periodic function ofs with period 1] Indeed, by using the
a p=1 ' Lehman representatiof86], it can be shown that the time

Fourier transforms of both function®vert ands, respec—
XJpdT[e—ikX(r)_e—ik‘X(Pm)] tively) involve the same analytic functiomy:C2(k,w)
0 =lim,_,9(k,w+i7), while C+(k,v)=g(K,ivy), Wheren is

a relative integer that indexes the discrete frequencies

- - =2mn. Consequently, the linear response can be ex-

+ : Yn

z e"‘z pE P E D(X) pressed as
X | DX o (kXX N9Q(k) =~ f

f X)Pprarpr ) Mk) 2 P ®(k)==Buc(k) | ds CR(k.s).

(4.39
’ ik-X'(
f dr'fe ]] (4.32 On the other hand, the quantum static charge-charge corre-

lation function is related to the quantum time-ordered
The smallk expansion of the induced charge density in-charge-charge correlations by6]

volves only even powers dk| because of rotational invari- o o
ance and the quantum correction term@8(k) inside the C=(k)=Cs(k,s=0). (4.39



4576 F. CORNU 53

At a classical level, the linear response theory redd25 excess charge being confined near the boundaries of the sys-
L tem). According to(4.32), the corresponding equatidf.3)
indclypy_ ol implies that the second moment of the quantum charge-
8q(k) za: CaPa (K)==prc()C(K), (4.3 charge correlation function satisfies the equation

whereC®(r) is defined by(4.30 with the classical values in 1
place of the quantum ones. The classical equadod6 can J dr r2C9(r)
be readily retrieved from the corresponding form#&82 of 6

the loop formalism, because, in the classical limit, the shape

: - - 1 1 -
X shrinks to zero and the correction terms inside the curly  _ _ _ - o2 D.(X X
brackets of(4.32 vanish. 47B 6 [% ”‘pz'l P ] DpX)pap(X)
D. Coulombic screening % de X 2_X(P 2
. {[X(7)]"=[X(P(7)]%}

Screening rules analogous (®.2) and (1.3 can be ex-
pressed in terms of the loop distributions via the linear re- o o0
sponse theory. The total induced chafge S ,e,p"(r) is e e 2 p
finite and since the correction terms @?(k) in the linear @ a' pP=1 pr=1
response equatiof#.32 vanish wherk=0, this implies that
xfdrf D(X)j D(X")p 2 0 o (1. X,X)

f dr C®(r)=0. (4.3

p’ ’ ’ 12 2

Equation(4.37) is a consequence ¢1.2): the total charge of ” fo dr{lr X! =r }] ' (440
the polarization cloud around the charBge,p,(r)dr con-
tained in an infinitesimal volumer of the medium is exactly ) ] ] )
opposite to this charge. The propet.37) can also be de- Eq_uann(4.40) is the version of the screening sum rl(11e3)
rived from the imaginary-time equations of motion, underWritten in the loop formalism. Usually1.3) is written in
the assumption that the correlation functions have arf€rms of th_e retarded charge-charge correlation function in
inverse-power asymptotic expansion starting a$ at large  imaginary times,C+(r.s), as
distanceg11]. According to the definition$4.5) and(4.30),
the screening equatioi@.37) implies that

S &/ p9+ [ dr o2
3

1

1 1
- 2 -
6 fdr r fo ds G(r,s)= Ang’ (4.4

exc )

This sum rule can also be derived from the equilibrium equa-
=—> > eaea,f dr p(aZ;/TQ|nonexd(r)_ (4.3g  tion under the same assumptions as #:137) [11]. In the
a gy classical limit, the shap¥ shrinks to zero and4.40 tends

to the well-known Stillinger-Lovett sum rulgl0]
Charges that are not exchanged are expected to attract or

repel each other according to whether they have opposite

signs or not. Henceforth, in the polarization cloud around a 1 Dl

chargee, of the medium, the total charge of the part of the 6 f dr rCo(r)=— AmB’ (4.42
cloud that is build by particles that are not exchanged with

€., Namely, =, €, S dr{p2) U nonexci1)/pa] has a sign op-

posite toe,,, so that, according to the identity.9), In  Fourier representation, this sum rule reads

limyoBvc(k)CC(k)=1 and it can be derived by inserting
= the classical linear respon$£.36) in (1.3).

> ek pzf D(X)pa,p(X) For the OCP, the charge density is proportional to the

a p=1 particle density and the position of the mass center of mov-
ing particles is only subjected to the harmonic force due to

exd{r)} the charged background. Thus it can be shown exactly
[30,37 that the second moment of the quantum charge-

(4.39 charge correlation does not obey the classical sum(AxE)

' since it satisfies

>0.

2)T
p3+ [ ar e

Equation (4.39 is valid even in the case of fermions, for

which the sign ofp, ,(X) is expected to depend gn The 1

inequality (4.39 will be used in Sec. V. 5 f dr r2C8.4r)=—
Moreover, since Coulomb systems in dimension 3 can be

assumed to be in a conductive phase, the total induced

charge in the bulk is expected to be exactly equal to the

opposite of the infinitesimal external chargieér 5q(r) (the  wherewp is the plasma frequenayp= (4mpe?/m)*2

1 Bhﬁ)p r(ﬁﬁ(x)p
ﬁ > cot 5 ,
(4.43
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V. RESUMMATION OF THE COULOMB DIVERGENCIES diagram is thoroughly independent from the resummation
IN THE LOOP VIRIAL EXPANSIONS between the points of another pair. In Sec. V C the explicit
values of the resummed bonds are calculated. The so-
calledF°®®, F™¢, andF°™ bonds decay exponentially at large
The quantum particle-particle correlation has contribu-distances, whereas the fourth bolgd behaves as a kind of
tions from both the loop density and the loop correlations dipole-dipole interaction: the charge-charge and multipole-
Since the classical loops interact through a two-body potencharge interaction are classically screened, but the multipole-
tial v(%; ,%7}), usual techniques of classical statistics can banultipole interaction, which is typically quantum, induces
applied to the system of loops, which was done by Ginibre imalgebraic tails. The integrability of the resummed prototype
the case of short-range potentigls17,38. The notion of  diagrams for the loop-fugacity as well as the loop-density
standard Mayer bonds, which were originally introduced forexpansions is discussed in Appendix C. In the case of the
point objecty14], has already been generalized to extendedoop-fugacity expansion, the integrability is ensured by per-
objects for the Coulomb potentidP1,2 in formalisms  forming first the integration over the shapes of the loops, and
where the exchange effects were treated perturbatively. I is discussed how the loop density decays faster than any
the present paper, we introduce Mayer bonds for the classic@verse power of the distance between two points in the loop.
extended exchange loops by setting Then the integrability of the diagrams in the loop-density
. o —B (L L expansion of the Ursell function is derived from the connec-
f(7, ) =e Airt7in -1, (5D vty of the diagrams. In Sec. V D the part of the particle-
particle correlation arising directly from exchange effects
with B;;=pe,e,,. The usual virial diagrammatics can be (ie., the part that is derived from the loop density

applied to the system of loops and we call “points” of the bounded by a series, which is expected to decay faster than
diagrams the loop objects’ any inverse power law, as the series corresponding to the

The present section can be summed up as follows. In SeE)_artche-particIe cqrrelation "? a noninteracting system.
V A we introduce the virial diagrams for the loop-fugacity Th_e Ioop-fuggcny expansion of the density of loops has
expansion of the density of loops and for the Ioop-densit)}he diagrammatic representatift, 14
expansion of the Ursell function of loops. The loop-fugacity 1 N
expansion of the density of loops allows one to study the part S V=2 il f s 2L [ }
of the particle-particle correlation that comes from configu- p(Za) Z(fa); S, nﬂl [d %z ]| 1] f o
rations where the two particles considered are exchanged (5.2
within the same cycle; because of the strong connectivity of
the loop-density diagramgthe absence of articulation [N (5.2) the sum runs over all the unlabeled topologically
points, the loop-density expansion of the Ursell function is different connected diagrams with one root point.Z,
more adequate than its loop-fugacity expansion to study thévhich is not integrated overand N internal points(N
large-distance behavior of the part of the quantum correla=0....7°). Each pair of points irt; is linked by at most oné
tions induced by the loop correlations. Every Mayer diagranfond and every point has a weight equal to 1IIf] is the
diverges because of the nonintegrability of the décay of ~ Product of thef bonds in the(; diagram andS; is its sym-
the loop potential at large distances. The exact resummatioietry factor, i.e., the number of permutations of the internal
process displayed by Meerd@] for the classical Coulomb Points Z,, that do not change this product. For brevity, we
gas is generalized to the system of loops. The resummatiopave used the convention that, N is equal to 0, no
scheme for the loop-fugacity expansion of the loop density i$1/Sc)/TIy-=1[d ,(Z,)][11f]; appears and the correspond-
displayed in Appendix B, while the analogous and simplering contribution top(:Z,) reduces ta(Z,).
resummation for the |Oop_density expansion of the Ursell- The truncated tWO'IOQp distribution is related to the two-
function is performed in Sec. V B as follows. By using the body Ursell functionh(:#; , %) of the loops via
multipolar decomposition of the potential introduced in Sec. AT o o o
Il C, the initial Mayer bond is decomposed into auxiliary P9 (Za, Zp)=p(Za)p(L)N( Ly, %) (5.3
bondsf associated with auxiliary diagrami The f bonds . L o
describe, respectively, the charge-charge interactisf) ( The topological structure of the V|r_|al d|agrammaths implies
the multipole-charge interactiongf™ and f°m), the that the Ursell function has the simple loop-density expan-
multipole-multipole interaction f{™™), and the rest of thé  S'ON
bolnd (fT)h. In ortlderhto resunf1 trr:e ICoulom% (;invergencies in- L N
volving the total charges of the loops, thediagrams are o o & o
gathered into equivalence classes characterized by a proto- h(“éa"ﬁb)_; S: f nﬂl [dkénp(ﬁn)]{n f ]
type diagram, where the so-called Coulomb chains of (5.4
charge-charge bonds ending with either f&h bond or an
fM¢ bond are suppressed. The definition of the prototype dian (5.4) the sum runs over all the unlabeled topologically
grams with several kinds df bonds together with the asso- different connected diagranmiswith two root points %, and
ciated topological rules ensures the existence of a one-to-on&},, andN internal points(N=0,...¢°) that are built as th&
correspondence between the partition of the auxiliary diadiagrams, apart from the fact thatladiagram contains no
grams and the set of the prototype diagrams. The intermedi-articulation” point. An articulation point is defined by the
ate points of the Coulomb chains are integrated first and th&ct that, if it is taken out of the diagram, then the latter is
resulting resummation between two points of a prototypesplit into two pieces, one of which at least is no longer linked

A. Virial expansions for the classical gas of loops
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7 ciples of the resummation are simpler in the loop-density
0——0 = 0--0+0—0 +0+—0 + 0—+0 + 0=>0 expansion than in the loop-fugacity expansion and the latter
is displayed in Appendix B. In order to exhibit the part of the
FIG. 2. Diagrammatic representation of the decomposﬁmﬁ) pail’ pOtential that |S C|aSSica||y Screened, We.use the “mul'
of anf bond (between two points/; and %; denoted by two white ~ tipolar” decomposition(3.22 of the loop potential. We split
circles into five auxiliary f bonds. A dotted line is afi; bond, a  the original bond (% ,*#;) defined in(5.1) into the sum(see
solid line anf®® bond, a solid line betweer¥; and ; with one Fig. 2
arrow pointing to the pointZ; a bondf™(%; , ), and a solid line

with arrows at both ends &"™ bond. f=fr(Zi, 2+ 1°%ci ) + (L, ¢p) +1°7(ci, 7))
+ I o), (5.6

to any root point. We mention that, N is equal to 0, no
[dZ.p(#,) appears and(1/Sp)[I1f]; is reduced to
f(,,%,). The absence of articulation points is the only 1he truncated bondy

difference between the topology of the diagrams in the den- o Bn(F B -

sity expansion and the topology of the corresponding dia- fr(Z, Zp)=e v A =14 Biju( 7, 7)) (8.7)

grams in the fugacity expansion. The connectivity is “stron-

ger’ in the first case and, subsequently, the loop-densityecreases only 6{$(pieai)(pjea1)]zl(2Rfj), while the rest
expansion is more adequate for the discussion of the largef (5.6) is inspired by the multipolar decompositi¢®.22 of

distance behavior of the Ursell function. v(%;, ;) rewritten as
When the distanc&;; between the positions of the loops
goes to infinity, the pair potentidB.13 between the loops — Bijv="fCC+ ey fomy fmm, (5.9

decreases as the Coulombic potenti&;1/ Thenth term in
the Taylor expansiori3.20 of the potentialv(R;; . X; . X;)  \uith (L c)=—Biv™ (L, c) femic. )
decreases asR[\"*, so the dominant asymptotic behavior of —B.°"(c y)' ond me( 7 (’I’/"/j)JE,_IBijvmm( (/)i' (/JJ)
&~ . . . ij i=2j) i LD i L)
the Mayer bond (7} , 7)) defined in(5.1) is With the decomposition of the bonfl into the sum(5.6),
o PN Al _ N @ OO A h(%,,%,) can be expressed by the formula.4), where
P, 7)== B(piea) (Pieq)ve(Riy) = = Biju™(Ci,C)), o Sher diagrams are replaced bydiagrams made with
(59 ponds that are equal either tg, f°°, £™° ™ or f™™,

with the notations 0f3.21). So the integrals corresponding

either to theG diagrams of the expansiaib.2) or to thel’ o 1 " o o ~
diagrams of the expansids.4) diverge. h(Za, %)= 2 5 f nﬂl [dﬁnp(ﬁn)]{n fL
r r
. o . (5.9
B. Topological principles of the resummation

These large-distance Coulomb divergencies are dealt witfihe I andI" diagrams have the same topological properties
by means of an exact partial resummation of auxiliary dia-because thé bond is just the sum of the variofidoonds. An
grams, according to a method introduced by Meeron in thexample of a’ diagram is shown in Fig.(@).
classical cas€2]. The resummation scheme for the loop-  Our purpose is to resum all the Coulombic divergencies
fugacity expansion of the density of loop§¥) follows the  involving the total charge of a loof?,,, i.e., the total charge
same lines as that for the loop-density expansion of thef the correspondingp, quantum particles. In order to
Ursell function h(#,2"). However, the topological prin- achieve this aim, we first integrate over all the intermediate

Py Ps

FIG. 3. (a) Typical auxiliaryf diagram andb) the prototypdl diagram to whicH contributes by the resummation process of Sec. V B.
The white circles are root points and the black circles are the internal points that are integrated over with the fde@gt€) in (5.9).
The notations for the bonds i are those of Fig. 2. In the correspondibigdiagram, the Coulomb poinlgﬁ"} defined in Sec. VB are
suppressed and the points that are left over are linked bly bonds. AnF°® bond is represented by a wavy line, a bdfld%(~; +75) by
a wavy line with an arrow pointing t&” , and anFg bond is denoted by a solid line with a superscfiat.
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The identity(5.10 is valid only if the definition of thdl
diagrams is such that there does exist a one-to-one corre-
spondence between the partition of thediagrams and the
set of thell diagrams. In fact, in the process that associates a
(b) givenI' diagram with all diagram, a pointZ, that is con-

nected to at least three other pointdiis kept as a poin?;,
in II, whereas an intermediate point in a convolution of

oUWV = O0+—0 + O*+—8—0 -} C+—0—0—0 -} R R f S X
bonds inI" disappears if and only if it is a Coulomb point.
. Thus we have to introduce various kindsFobonds that can
7 () be distinguished from one another by some corresponding
0-Fo= 0 - 04 0«>0+F0—0—>0+ 00 —0—>0+ excluded-convolution rules. We call ttfe bond that links
two points7; and.7; of all diagram
I A + A + A + A + A (i) a “charge-charge” bond°%(7#} 7)) if 74 and7; are
linked in thel" diagram by a single chain df*® bonds[see
R A e J___X e+ Q Fig_ 4(3)],

(i) a “multipole-charge” bondF™%7;,7}) [a “charge-

+ £:> + £:> +---+& multipole” bond F°™(7},7))] if the points are linked in

the I' diagram by a single chain made with d&f° bond

starting at7; convoluted with a chain of° bonds ending at
e +<§>+... +W° +oe 7} [a single chain off°® bonds starting at”; convoluted
with an f°™ bond ending at”j] [see Fig. 4b)], and
(iii) a “dressed” Fg bond in other caselsee Fig. 4c)].
FIG. 4. Diagrammatic representation of the resumidzbnds,  Then the excluded-convolution rules that distinguish Ehe

according to the definitions of Sec. V B. With the notations of Fig. hqnds read as follows: in tHd diagram there cannot be any
cc mc b
3, (8 corresponds to aR““ bond, (b) to anF™* bond, andc) to an convolutionF S¢ F°¢, EMG F6C FCC, FOM 5 MG, FCM Thyjg

Fr bond. rule is exemplified in Fig. 3. We stress that the resummations

of Coulomb chains between the various pairs of points
{#,7} are thoroughly independent from one another.
points of the convolutiong®® ¢, fmS f¢¢ fccy fem gng Hence the topological structure of the Mayediagrams is
fmS £<M |n the following, these intermediate points are preserved through the resummation process, apart from the
called “(convolution Coulomb points” Z, . The convolu- above extra excluded-convolution rules, which avoid double

tion chains that contain only intermediate Coulomb pointscounting in the correspondence betwdeandII diagrams.
are referred to as “Coulomb chains”; a Coulomb chain with-

out any internal point is either aif, f™¢, ™, or f™™ bond. o

First, we notice that we can make a partition of fhalia- C. Explicit values of the resummed bonds

grams such that all the diagrams in a given class lead to the 1. The screened charge-charge bond¥

same so-called prototydd diagram, when all the Coulomb ] o ] )
points are supresseéih the sense that they are already inte- According to the definition of the preceding subsection,
grated over. An example is given in Fig. (®). There is at

most one link between any two points that are left over in a

I1 diagram through this process. As shown in B2, mere  F*(#1, 7)) ={°(A, 7))
combinatory and topological considerations lead to the iden-

s N
tty +3 | {H dz (el |t 20
N=1 k=1

, X fee( Al Ay e 2). (.12

I

(5.10

1 M
h(za,zm:; 5 f ngl [d:%mp(:m)]{ﬂ F

_ o Since thef°© bonds(5.5) do not depend on the shapes of the
with the definition loops, the integration over the internal degrees of freedom
(a,p,X) of the N intermediate Coulomb loops{1* in a con-

1 i . ., ~ volution chain of N+1f bonds factors out as
F(A,77)= —f dzil (el [ fl . .
=g g | AT - pon s oezpip, 001
(5.11) The contributionF¢¢ from the convolution chains of®®

bonds with all possible lengthge., all possible numbens

In (5.11) the sum runs over all the unlabel&q, diagrams Of intermediate pointsis readily calculated by a Fourier
that are built between the two root pointg and .7, by  transform over the positiong; of the loops, as in the dia-
adding Coulomb chains made witky Coulomb pointsZ |/}, ~ grammatic version of the Debye-kkel theory[15]. With

according to some prescriptions explained below. the notationg(k)=/dr exp(ik-r)g(r),
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J' dRijeik'RiiFCC(G%} ,%]) O*»0 J O—@—>0 | O+—0—0—+0 | ===

o

s ) w ) FIG. 5. Diagrammatic representation of tR€™ bond defined in
=~ B(pi€a)(Pj€q) | vclk) + > —,321 eapEl p Sec. V C, which is just an auxiliary object in the calculation of the
= =

N=1 Fg bond.
N
XJ D(X)pa'p(X)> [vc(k)]N} where ¢ee -7 ,Cj) is the electrostatic “Debye-Hikel” po-
tential between a point chargg and a charged curve),
At with a shapeX; and a charge densityo-i(r)zfgidr S(r
= — Bij PiPj KT 2 (5.13 —0,(7)) [see(3.23)],
2__ PANES 2 : Pi
\(lzhg)re K*=4mBZ 25 n—1p D (X)p, n(X). According to betocl 7€) =P jo dr $[Q(7)—R;].
In a similar way, we obtain
K’=4mBY, €2 pS-I-J dr p2TQ  (r)|. (5.19 Y
: oxen Fo™(ci, %)) == Byl detect Ci +£1) — $°(Ci 1C))]. ‘L
% is positive and finite, according t@.39. Thus« is real (5.19
and finite and the resummed charge-charge Wéffdeads
3. The screened dressed bong F
Fe(ci,cj)=—Bijpip;jo(rij) = — Bij ¢°°(ci ,C)), Fr(7#;,7}) is the sum of all the subdiagrarﬁ% that ap-

(5.159  pearin(5.11) and are not included iF°¢, F™¢, or F°" be-
cause they can be convoluted with any other subdiadigm
where ¢°%(c; .C;)=pip;¢(r;;) and ¢ is a potential in the OF I'; [see Fig. 4c)]. Fr can be viewed as the sum of two
manner of Debye kinds of contributions. The first one involves the single
bondsf; andF™™, whereF™™ denotes the sum of the single
e KT chains with all possible lengths in which &A° bond starting
P(r)= : (5.16  atz; is convoluted with a possible chain 6f° bonds that is
r itself convoluted with arf“™ bond ending at (see Fig. 5.
The second kind of contribution corresponds to multiple
In the fermionic quantum regime at high density, the kineticchains. According to_the definitiotb.9) of the I' diagrams,
energy becomes far larger than the interaction energy and thgere is at most ond bond between two points of those
correlations due to the interactions become negligible'diagrams and we have to introduce the notion of “genuine”
then, according to(4.9), p 3+ fdr p{) %e,c{r) becomes Coulomb chain, i.e., a Coulomb chain that contains at least
equal to Jpo/d(Bu,) and the value(5.14 of «* tends one intermediate Coulomb point. Then the multiple chains
to the randozm-pohqase approximatio(RPA) - expression  that contribute td- g can be expressed either as the product
< )93477,6’%94(9% ld(Bry)- In the classical limit, of one among the fivé bonds withn genuine Coulomb
Paa “lexch Vanishes and we retrieve the inverse Debyechains withn=>1 or the product ofn genuine Coulomb
Hiickel screening lengtip,=[4mBS e2p,]"% A more de-  chains withn=2. As explicitly recalled in Ref[25], the
tailed comparison with the screening lengths of the usuatymmetry factors of the products of similar chains are such
mean-field theories and of the RPA theory will be given inthat, when the products af genuine Coulomb chains are

Sec. V of paper IL. summed over all possible chain lengths, the result is merely
_ equal to(—B;j Yenain"/N!, Where — B;; cnain denotes the sum
2. The screened multipole-charge bond' of the genuine Coulomb chains with all_possible lengths.

The only difference between aR™ bond and anFc¢ Eventually, sincd is the sum of the various, Fy [see Fig.
bond is that there is an end boffd° (5.8) in place of a bond  4(C)] can be written as
f¢¢ starting at point7; . By means of the relation
Fr=fr+F™M+ f[e Aij¥chain— 1]
[(Xi,vi)qfcc]*fcc*...*fcc:(xi.vi)q[fcc*fcc*...*I;c%?) +[e*ﬂiji//chain—1+ﬂijlrlfchair;|_ (5.20

] me ) According to the relatiort3.22 together with the definitions
the calculation of thé""bond can be deduced directly from of pec Fme pem and ™M the value ofyiyy, can be de-

that of F°°. The result is duced from the relation

) P o 1 — Bii[v + Yenail = FC+ FMC+ FCM+ E™™M (5.2])
FMS =By [ 7S o DX ViIRy) 1 Ve
a By using this relation together with the definitiof&1) and
== Bijl beiecl Zi,C)) — ¢°(ci,cp],  (5.189 (5.7, (5.20 can be rewritten as
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FR:eF°°+Fm°+F°m+me_l_Fcc_ Eme_ pem We notice that the value af,,, is derived by comparison
(5.22 with (5.21),
Only the calculation of the explicit value 6" is left to be Yehairn= Pelect™ Uelects (5.29
performed.
F™™is the sum that involves, on one hand, the basic bon@nd that it vanishes when the density goes to zero.

fmmn /), wherer—P(7) must be equal te’ —P(7), and, The explicit value of is derived from(5.22 and(5.28),

on the other hand, the genuine Coulomb chains in which an

=@ Bijlvt delect Velecd — 1 — FCC— EMC_ ECM
f™° bond with a parameter starts at”2 and anf®™ bond Fr=e ™ =R F R

with any other parameter’ ends at”}. According to the (530
identity The dressed bonBx depends on the density only through

, the inverse lengthe. Since ¢, and consequentlybgeq, de-

[OXi Vi) I f 0% -k FES [(X- V)9 £6€] creases exponentially at large distanaes,dejec—v el NAS

, an algebraic tail originating frofV=—5,;(v —v¢jec)- Thus,
= (Xi- V)X VT [F F5 - ox FE ], contrarily to the otheF bonds,Fg decreases algebraically at
(5.23 large distances as

the value off " is calculated as that d¥°¢, with two bonds Fr( %, %) ~ eV7i7)—1, (5.30)
f°™M (5.8) at the end points, Rjj—
P 11 This algebraic behavior starts with a itail and its inverse
Fmm= —B,,f drf dr' E E q_ q_ power-law expansion is derived from the decomposition
X[Xi(7)- Vil9Xi(7') - 7,19 W= 2, W,(%, %)), (5.32
y=
X{o([(7=P(n)]=[7"=P(7") Dvc(R;)

whereW, decreases asR/f; whenR;; goes to infinity,

+[(Rij) —ve(Rij) 1} (5.29

- (P,
According to(3.22 and (3.28), the pure Coulombic part in W, (%, 7)) =— Bjj Jo dTJO dr'{o((7—P(7)]
F™™ can be written as

o o o 1
W(Zi, %)== Bijlv(Zi,. 7)) ~veed i1 7)) ] —[7"=P(r")])—1} =Dt
Pi Pj _
__Bij fO deO]dT, X[Xi(T)'Vi‘f'Xj(T/)'Vj]y 1UC(R”‘).
(5.33
x{o((ri—P(r)]=[7 —P(7{))—1} _
The leading termiV; reads
Xvc[Qi(7)—Qi(7)], (5.29 |
where vgee (%;,%)) is the electrostatic potential between — Ws( %, %)= ﬁ.,j dr’
two classical loops defined i63.27). The corresponding 0
screened Debye potential is x{6(r—P(7)]-[7 —P(7)])-1}
Delecl 7 v%}j):fpidepde'Q{’[ﬂi(r)—ﬂj(T’)] XIXi(7)- Vi IIX(77) - Vi Joc(R).-
o 0 (5.26 (5.34)

and, by using5.15), (5.18, and(5.19, the Debye partin the ' ‘”‘;O'VSS the Sh?ﬁ’ﬁxi and th of 7 and ; simulta-
expression(5.24) of F™™ can be rewritten in terms of this "€OUSlY, because of the property
potential as

fopidrf:"dr'{éqr— P(r)]-[7'—P(+)])—1}g(r) =0.
(5.35

Our procedure is analogous to the resummations of the
Eventually, by collecting5.25 and(5.27), we get the rela- Coulomb divergencies that are done in the density-expansion

= Bij betecl %1 1) ~F*¥(ci ) ~F™( % ,€))

—F™(c;, ). (5.27)

tion scheme of Ref[25] for a multicomponent plasma where the
B 7 - exchange effects are treated perturbatively. The latter formal-
Fe(ci,c)) +F™ (% ,¢)) +F™(c;, Z) + F™"( % ,.%)) ism leads to thexactcalculation of the equation of state up

to order2 in the densities. These calculations are valid in the
~Bilo (L, Z) ~veted L1 L)) F detedd i1 7)1 internal shells of the sun, where the density is low enough
(5.28 and the temperature is sufficiently high for the sizes of the
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Brownian bridges to be lower than the interparticle distancehe weightw (except in the case o¥,, which has the same
(weak degeneragyIn this scheme, some resummed bondsrole in all P diagram$ and are analogous to those of Sec.
decrease exponentially as either the Debyekdlipotential Vv B. The formula(5.36 is similar to Eq.(5.3) in Ref.[25].
(classical collective screenipgr its gradient“diffraction” In order to get finite weights, the auxiliary decomposition of
effects of quantum dynamicend the other bonds decrease f into f bonds is slightly different from(5.6) and fiveF,
as 13 and involve the description of the quantum two-body bonds appear. The, bonds decay either exponentially, with
bound states. The topological definitions of the resummedn inverse screening length,, or algebraically, as
bonds are not the same as in the present paper; they are rotdW]—1. The expression ok, is the same as that of,
convenient for the study of the large-distance decay of thevith z, , (X) in place ofp, , (X), and, in the bosonic case, it
correlations because they only exhibit the exponentials lower than the RPA value. After resummation of the
screening of the charge-charge and charge-dipole interactionharge-charge Coulomb divergencies, according(B8),
whereas, in fact, every multipole-charge interaction is expo{B11), and (B12), the fugacity of the root point#, is re-
nentially screened, as in the classical regithvoreover, the placed by a weighw(%,), which is lower than the loop
exchange effects are not taken into account systematically ifugacity corresponding to a quantum system where the inter-
this formalism) action between particles ig,(r) =exp(— «,r)/r instead of

In the classical limit, our formalism leads to the resum-v(r) and the chemical potential of a particle is equaktp
mation scheme with reexponentiation that Meeron developeglus the self-energy of a point charge creating a potegjal
for the density expansion of the correlations in ionic solu-
tions [2]. As shown in Sec. Il B, wherk goes zero, the
loops are reduced to points that interact through the potential
eaieajvc(rij). The screening length tends to the classical De-

bye lengthxpl. The parameter does not appear in the Eventually, according t¢3.16), the weight of the root point
interaction, v gje¢; cOiNcides withv, and W=—;;(v — v gjec) %, in alP diagram is bounded by the fugacity of a noninter-
vanishes. ThusF°™ and F™® do not exist, while acting loop with a chemical potential that includes the self-
Fi—0=—Bij¢on(rij) andFgl;_o=exd—pB;¢pn(rij)]—1  energy of a point particle creating a DebyédKal potential
+Bijdon(rij) coincides with the resummed bars introducedexp(— «,r)/r,

by Meeron. The topological definition of the resummed dia-
grams is the same as in the present formalism.

) _ cintg, .a
WL <12, p,(1a, T 265 ko) [€” 5 D (537

N _ 0/ pa
W(Z<|Zh_ o (1o, 365 k)€ FliD. (5.39

D. Decay of the exchange part of the correlations ) - ] )
The integrability of the resummed diagrams in both the

As shown in Appendix B, a resummation in the 100p- oo fugacity expansion of the loop-density and the loop-
fugacity expansioris.2) of p(‘Z,) can be performed along & gensity expansion of the loop Ursell function is studied in
process similar to that in Sec. V B for the loop-density ex-pnnendix C. The two values for the weight of internal points
pansion of the Ursell function. The main difference comesyre shown to be bounded by a constant times the Gaussian
from the existence of artlcul_atlon points in tiiediagrams ] exr[—E%({t,})], accorqling tc_J(3.16) and(Bl_3), and the mea-
involved in formula(5.2). This difference has two conse- ¢ e gver the Brownian bridgdsg},_, _, is also Gaussian.

guences. Fl_rst, there may be articulation points {;\Iso in th%ubsequently, the integrals corresponding to the resunimed
prototype diagrams’ obtained after the resummation. Sec- jizgrams are shown to be conditionally convergent at large
ond, convolution rings that are attached to an articulationyistances if the integration over the shapesf the internal
point and in which all the intermediate points are Coulomby,gns are performed before the integration over the relative
points d|s§ppear when all these points are mteglrated over. l[5bsitions of the loops(This kind of procedure also operates
the following, these rings are called “Coulomb rings.” Sub- i the case of classical two-dimensional plasmas without any
sequently, the points” that are left over have aweight.”)  resymmatior{39].) Then, the nonabsolutely integrable part
different from the valuez(”) that they had in thé> dia-  f the asymptotic behavior of the algebraic bond disappears
grams. The analog of the resummation form@al0 reads  hatially because of rotational invariance arguments and the
M remaining contribution from dipole-dipole-like interactions
p(:%ﬁa)=W(c%ﬁa)E if H [dymw(ym)][n Fz} . is prop_ortional to th_e short-ranged Lapla_cian of '_[he Coulomb
T Sp) m=1 P potential. The spurious short-distance singularities due to the
(5.369  auxiliary decomposition of into f bonds disappear when
the diagrams are suitably collected togeth#d,41. As ar-
The sum runs over all the unlabeled topologically differentgued in Appendix C, the loop densip(7) is expected to
connected diagramB with one root point%, and in which  decay faster than any inverse power law of the extension of
two points are linked by at most orf€, bond. Since there the shapeX, so that the integrability of thH diagrams in the
must be a one-to-one correspondence betweatiagrams loop-density expansion of the Ursell function is readily de-
and a partition of thes diagrams into equivalence classes, rived from the connectivity of those diagrams.
excluded-convolution rules appear and, at the same time, the Since the average of the loop density over the Brownian
weight w(#3,) of every internal point/,,, depends on the bridges has a fast decdgee (C7)] when the distance be-
role of P, in the topology of the diagranf. As shown in  tween two points in the loop becomes very large, the part
Appendix B, the excluded-convolution rules for tRedia-  (4.6) of the particle-particle correlation that comes from ex-
grams are simply expressed by introducing two values fochange effects is bounded, according3al9 by
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oo Pa Pa As a final remark, we stress that this fast decay might
|p(2)(IQ|excl‘(rab)|< 2 paf H de? 2 disappear at strictly zero temperature. For instance, in a ideal
faa Pa=2 =1 I*=2 gas of fermions at zero temperatund(k) is a (nonanalyti¢

step function and the correlation functiés.22 decays al-
gebraically with an oscillating factor that has a phase
2K 4fap, Where kg, is the Fermi momentum

h%kZ J2m,=pu,. However, at any nonzero temperature,

I*-1 Pa
X(S( > t,a—rab) 6( > t T ap
I=1 |=|*

X |ZZa,pa(#aa+ %eia’(z” however small it is, the large-distance behavior of the
particle-particle correlation is given by the polesndik) (in
X exp( the complex plane of the variabjk|) that have the smallest

imaginary part and the oscillations are damped by an expo-

13 a2 i a nential factor over a distang#k ,/27m,, . This difference
Xi_ 21 (4] )J’ Bl D&D) in the analyticity properties of the occupation number when
¢ the temperature is increased from zero to a finite value also
o generates the Friedel oscillations in the large-distance behav-
X % Io(Za)|- (5.39 ior of the one-component plasma density around a test

charge at zero temperature in the RPA model, and its damp-
In Appendix C we argue that ing, as soon as the temperature is nonZeez p. 179 in Ref.
[36] and references cited thergin

decays faster than any inverse power IaV\{t(ﬁ},:L__”pa. At
this point, we may only conjecture that the integration over A. General structures of the diagrams

the positions ofp,—2 particles and the summation over the ¢ finite temperature, as recalled in Sec. IV C, the quan-
. (,'/ 1 .
size p, of the loop ¥, preserves this fast decay. tum  static  structure  factor Sga,(r)Eprz,TQ(r)

To exemplify our discussion, we return to the noninteract- ) . .
ing case and we mention a few results about the Iarge:F 5a'a,pa5(r)_can be palculated as the opposﬂ_e of the time-
distance behavior of the correlatig®T2 (4.22 in a non- ordered density-density correlation at equal tifi@§] and

interacting system. For bosons in the noncondensated phalfi induced charge density in the presence of an infinitesimal
(1,<0) and for fermions(7,=-+1), n°(k) is infinitely dif- external charge can be related through the linear response
ferentiable ink at finite temperature, its inverse Fourier N€OTy (4.34 to th? integral of the tnEe-qrdered charge-
transform decays faster than any inverse power,gf and ~ Ccharge correlation functiofi+(r,s) over the times.

so does the correlatignt2 T2, However, the integral ovee In the standard many-body perturbation theory, with the

in (4.22 can be written as a series of Gaussians with increag?ormalizations of Refl21], the time-ordered density-density
ation in imaginary time is equal to the opposite of the

ing ranges and it is not obvious that the sum of the serie§Ce!l nr '
evgentuaglly has an exponential falloff. total “polarization” JI(r,s) [36]. The usual notatiodI for

For instance, for bosons at any temperature larger than tHe'® pOIa”Zat'o'?j,'s not to b? confused ;V ith th? noltatjbmr .
Bose-condensation critical value, the analysis in the complet e prototype diagrams of Sec. V. The total polarization is

plane of k| shows that the leading term in the asymptotic "€ Sum of all the connected Feynman-like graphs in which
behavior of the correlatiopT°9 (4.22 decays exponen- the points(r,s) and (0,0) are linked by loops of free propa-

tially (without any oscillating factgrover a length scale 9ators GYr.s1—s,) joined by interaction liness? (r,s;
[2k*]7%, wherek?® is defined in a similar way to the Fermi —S3) = = B€4€,/vc(r) 8(s;—s3), according to some pre-
momentum for fermionsi?k*%/2m,=|u,|. On the other scribed ruleg42]
hand, the integral ovek in 7,G2(r,,) may be written as a

series of Gaussians Gg(r,s)=f

p
l[ll D(£9)

Pa
exp[ -5 ) 2 (67

> (L)
! VI. COMPARISON WITH THE STANDARD
PERTURBATION FORMALISM

(zd:)s e/ TSl N2l — (s)],
(6.9

dk - 2,2
ik-r Bia)da— AN K2)
f (277.)3 € aqul (ﬂae ) €
312 where 6(s) is the Heaviside function. The graphs are conve-
) —(U2N)rs, (5.40 niently calculated by Fourier transform over both the posi-
tion and time variables. For brevity, we use the notation
JI(k,n)=JI(k,v,=2mn) in the following. The total polariza-
This series is convergent for any given,, because tion JI can be calculated in terms of a more basic object of
exp(Bu,)<1. The range of the Gaussians increases With the perturbation theory, the “proper’ polarizatiodl*,
and the large-distance behavior of the sum of the series haswhich is the sum of all the polarization graphs that are not
leading term that decays only exponentially. Under the assplit into two pieces when one interaction line is suppressed.
sumption that the same mechanism takes place for the upp@kcording to the topological definition ofi*, JI is the sum
bound in (5.39, the latter inequality ensures that of all the chains built with proper polarization graphs linked
2TQ  {rap) is a rapidly decreasing function of,. by interaction lines,

Paga,

= Burq)d
2, (7€) (2wqxi
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JI* ,(k,n i
Mo (K1) = o 1) C62 2 ek
1-Bue(k) D) el It (k,n) Wﬂ%(k) 2, e,e,J1,, (k,n=0)
The definition of the proper Ef)olarization isf,f related to that of AanBY, e., J1%_ (k,n=0)
the “effective” potential U®’ ,(k,n): U®  (k,n) is the aa!
sum of all the chain Feynman diagrams built with interaction - ) R '
lines linked by “proper polarization” graphs, k“—4mp 2 e,8,JI . (k,n=0)
e, vc(k (6.6)
U, (k,n)= P c© . (6.3

The latter equation ensures that, if the snkaixpansion of
JI*(k,n=0) starts with a power ofk| lower than 2, then

S e.p"%k=0)=—[dr sq(r). The total potentialV*® in
Equation(6.2) can be rewritten as the bulk in the presence of the external chafiggr) is re-
lated to the induced charge density by the Poisson equation

1-Boc(K) X e.eq Ty, (k,n)

a,a

T, (k,n)=J1% (K, _
ot (aM) = T i) AVO(r) = — 47 sq(N+ D ep™%r)|. (6.7

+ > H’;al(k,n)szIa,(k,n)ﬂZ,a,(k,n)_
1 1

!
ap,a,

Therefore, according to the linear response equatt6)
and(6.3), V°(k) is proportional to the zero-frequency com-
(6.4  ponent of the effective potential

tot,

The quantum static structure factor, which is given by a VE(k) _ 1 ueft (k,n=0)
relation similar to(4.35), is related to the polarization graphs 5q(k)  Be,e,
via

4
= . (6.8
2 < K2—amB> e.e, T* (k,n=0)
SS(K)=p 2T AK) + 8,00 p2= = 2 T (K,n). ~, CalarTaarlh
n=-—o )
(6.9 The correlation function and the induced charge density

can also be written in terms of both the effective potential
According to(4.34), the static induced charge density in the and the proper polarization by using the relati@y). For
presence of an external charge distributiigy(r) is related to  instance, in space and time representation, the rel&@ieh
the zero-frequency component of the polarization allows one to rewrité6.5) as

1 1
P+ 8,pa1) =~ T (1,5=0)= [ ar, [ ari [ ‘as, [ a5 S S, (s
0 0 ay !
1

eff * ’ ’
><Ualai(r+r1—rl,si—sl)ﬂaia,(—rl,—sl). (6.9

In the noninteracting casé6.9) becomes 2)7°(r)+p2s(r)=—J1%r,s=0) with JI%(r,s)=—7,(2S,+1)G%r,s)G%(—r,—s)
and, according td6.1), the result(4.22) is retrieved. From a formal point of view, the analog of the Dyson-like equaG®
is Eq. (4.5, written as

o p 1* -1
piiiTQ<r>+5a,afpa5<r>=5a,a/[paa<r)+ p;p D(X)pap(X) 2 5(r— .21 n)]

I*=2

+p21 p E p’ D(X)f D(X’)pa,p(x)ha,p;a’,p’(rlxixr)pa’,p’(xr)i (61@
= p'=1
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where h,, a7, pr(K,X,X") is the Ursell function between gz’ [D(&)expfink-[£(s')— &)1} =p>MBexd —(\2k?/2)|s
two loops. Similarly, the linear response equati@®), in _.’5/|(1_|5_S/])]: 7 JI2MB(k,s—5").
time representation and witA written in terms ofJI* and “
U®" by using(6.4), is the analog of the expressi¢f.27) for
the induced charge density in the loop formalism, o _ _ _ _
With  p o(X) N prarpr (XX ) par pr(X') in place  of In order to ggt finite g_raphs in the various dlagrammat_lcs,
PS:JT-a' p,(r,X,X’). However, the formal similarity is not so the.Coqum.b dlvergepmes are resummed, at .Ieast partially,
complete as to allow a one-to-one correspondence betwed mtroducmg a ch_aln potential. In the classical case, the
chain potential[15] is the sum of all the convolutions of

objects of both formalisms. ; . ! ;
The perturbation Mayer formalism developed for the PONdS —/5€.e,vc With a weightp, for each intermediate

: : int. The classical chain potential is equal t3e_ e,
loops in Sec. V differs from the standard many-body perturp_Oln . ) > ava
bation theory in two main respects. First, in the standardmeS the Debye-Fkel potentialgp,(r) =exf — ropr Jir. It

theory, the reference system is the noninteracting gaés}ppe_ars N the.Mayer—Abe formalism as well as in the expo-
whereas, in the present formalism, the interaction betweeﬂe.m'at?d Version developed_ by Meeron. In both cases, two
the charges that are exchanged is taken into account nonp 0ints in a diagram can b? linked by at most one bond and
turbatively from the start. Second, in the standard many:[ ere can be no c_onvolutlon of bondsf Caa ¢on- The
body perturbation theory, the basic objects associated wit tandard pert_urbgtlon many-body formalls_rr_l IS analog(_)us to
the particles are free-propagator loops and the potential b viayer formalism in theNsense t.hat the auxiliary bonds in the
tween the latter ones involves only discrete number of |Ater are ¢ 5e,&,vc) /NI, with NN='1,...,°C, and the re-
points in the propagators, whereas, in the potential betwee ummed bondg aré—fe,e, ¢on) /N!. (The bonds with
exchange loopsgveryline element of both curves interacts =2 can be V|ewed_ as products of the more elem_entary
with at least another one. This second difference is c:ruciatl)on_d ~Be,.8, dpy arising fro_m the resummation of single
and implies that we could not get a one-to-one Corresponghams because these bonds involve the proper symmetry fac-

dence between the two diagrammatics, even if we introducet®’ N!.) On thg contrary, the loop fo_rmallsm Is to be com-
another decomposition of the Mayer bond into an infinitepared rather with Meeron resummation scheme, where there

are only two kinds of bonds: the auxiliary bonds are
sum of bonds, —pBe,e,vc andf+ Be, e, vc and the resummed bonds are
—pe.e, dpy and exp—pe,e, dpn) —1+pLe,e, dpp -
- [—Bv (%, )N In the standard many-body theory, the same kind of re-
f(:%?:%'):,\lzl N (6.1 summation process as in the classical Mayer formalism can
- be introduced, in order to deal with the nonintegrability of
the Coulomb potential. The chain potential is the sum of all
and if we expanded the weight(#) about its value the chains of interaction lines linked by free proper polariza-
p°(£)=2(%) for the noninteracting system. However, in tions JI°_, =5, ,.J1%. It proves to be equal to the so-called

the Maxwell-Boltzmann statistics approximatipmhere only - RpA potential(which can be derived along other linE0])
exchange Ioopﬁé‘“: &% with p=1 survive; se€3.17)] only

B. Coulombic-divergency resummations and chain potentials

one Brownian bridge is associated with each point of a —Be e vc(k)
Mayer diagram and a correspondence can be sketched be- — Be.8u Prea(k,n) = :
tween some Fourier transform over the Brownian bridges 1—[3vc(k)2 eiﬂg(k,n)

and the looplT%MB(k,s) made of two free propogators in the
Maxwell-Boltzmann limit.J1%“B(k s), which is the value of (6.12

JIZ in the reglmg)\ik2/2>,8,ua, is obtained by replacing At |arge distances, the zero-frequency componentsgg,
nO(k) by efree a2 and 1-n%(k) by 1. For instance, in decays faster than any inverse power-law with a leading term
Ref.[21], the case of the OCP is dealt with as follows. The
decomposition f(Z;,&))=2,_1[—Bv(%;,Z)]"In! of the
Mayer bond between two filament§ and 7; is used in the
Mayer graphs of the filament-fugacity expansions. In those
graphs, each point has a weigtft;, which is equal to the where «ipp=—47B2 €2 J10,(k=0,n=0)=4mB= e29p"°°
density p2MB(B,1,) of a noninteracting gas with Maxwell- (8,u1,)/d(Bu,). Zrpa is @ renormalization factor of the charge
Boltzmann statistics. This weight(#)=z% , is a constant [21]

independent fron¥ [contrary to the density of closed fila- 5 2 2.0 1-1/2

mentspVB(£)] and, though all thé bonds in this decompo- e 7h* > € 9P, 6.14
sition explicitly depend on the shapes of the two filaments, RPA™ 3 4 m,(duy)?| :

the integration over the shapes of the filaments in the convo-

lution chains of bonds-Be?v(#,%") can be done explicitly. Though the zero-frequency component of the RPA chain po-
Moreover, since only one Brownian bridge is associatedential ¢gpa(r,S) decays faster than any inverse power law,
with each point of a graph, the Fourier transform of thethe nonzero-frequency components are purely Coulombic
convolution  [dR;[D(&)v(&i_1,&)v(&;,&i11) over [21], ¢rpalk,n#0)=h(n)v (k) and

the position variable R;,;—R;_; is proportional to

[vc(lf)]sz(gi)exp{i)\?k-[{j(si’)—’g(si)]}, which i§ a > e izmsimsd gL (r,n) = 1 h(s;—s,), (6.15
function of the difference si—s;. More precisely, nZ£0 r

e~ (ZrpaxrpAT

drpa(r,n=0) ~ ZRPA#: (6.13

r—o
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where h(s;—s,)=3,.0e 2™"(51-%2)h(n) has the property nents ofrpa and, in the loop formalism, they originate from
(5.35. W(r,X,X"), where the functions(—P(7)—[7' —P(7')])

As pointed out in Sec. VI A, in the present paper we use—1 has the same property bés,s’) [see(6.15]. The anal-
a decomposition of into auxiliary bonds that is different ogy between the two functions can be displayed more pre-
from (6.11) and, in the loop-fugacityloop-density expan- cisely by considering the Maxwell-Boltzmann limit of the
sions, the weight of a loop ig, (X)[p, p(X)] instead of a RPA theory.21] The Maxwell-Boltzmann limit of¢gps Can
series of graphs where every point would have a weighbe obtained directly by considering the Mayer diagrams of
equal tozgvp(x)ngyp(x). The difference between the for- the fugacity expansion for the equivalent gas of closed fila-
mulas for k&pa (6.13 and ments# (see Sec. VI A and by performing chain summa-
tions analogous to those performed in the quantum RPA
theory as well as in the fugacity-expansion diagrammatic
version of the classical Debye-kkel model. The corre-
sponding chain potential reads

Q

=4mp2, e“a(ﬂ BIp

_477182 eif dr P(Z)TQ|nonexcl(r) off

a o (rij . & ,§) = ds ds
[see(4.9) and(5.14] reflects the difference betwe@ﬂyp(x) ’
andp, ,(X). We notice that, if we consider a system of non- X pa(Tij + N o, & Ny 5,58,
interacting particles with various speciesand associated 6.17

chemical potentialsud such that its loop density, ,(X)
satisfies the relation where ¢pMBA(r,S) proves to be the Maxwell-Boltzmann limit
of ¢gpa(r,s) [see(6.12]. q&‘#f(r,J & ,§;) can be split into a

2 pzj D(X)pq,p(X)= 2 p2J D(X)pgyp(X) short-ranged part that decreases exponenti@tlyis the
p=1 p=1 Maxwell-Boltzmann approximation of the contribution from
=3p%a(Bu0), the zero frequency of the RPA potenjiaind a long-ranged

part equal to f3dsf3ds hyg(s,s Doc(rij+Ng&—N §])
then K*=4mBE e%dp 2/a(Burd), but this latter relation is [see(6.15)]. In the limit i—0, hyg(s,s’) becomes equal to
useless because the dens,)ﬁ/cannot be related tp, in @  §s—s')—1 and the long-ranged part gf" becomes equal
simple way. Indeed, an ideal gas cannot be found such thag W&f/u 1 7%l Thus the dominant asymptotic behavior
JD,(X)pS p(X)=g%(B. 5. p) might be equal to of ¢ at the first order i is equal to that ofV for loops
JDp(X)Pap(X) =9ulB{rartar=1...n,P) fOr everyp. with a sizep=1, namely,
Nevertheless, a ready comparison can be made between

the decay of the RPA potential in the standard theory and th @l ol ot ,

falloff of the sum of the four elementary bonds in the “lin- ?N e, zeh = gy Jo dSJO ds’8(s=s") = 1][Aq,4i(S)
earized” version of the loop formalism. In this version, the

bond is decomposed according .11) and (5.8) and no 'Vrij]

product off’ bond chains is resummed, so that no sum of

single chains is exponentiated. As mentioned at the begin- X[\ (") Vi, Joc(riy). (6.18

ning of this subsection, in this resummation process, the
excluded-convolution rules still hold and two points can be
linked by at most one multiple bond. The four elementary
bonds are merely the sum of the four kinds of single chains, The existence of algebraic tails in the particle-particle cor-
namely,F°¢, F™° F°™ andF™™, according to the diagram- relation can be investigated through the standard perturbation
matic definitions of Sec. V BIF™™ does coincide with the theory only in the very special case of the Of2R] because
linearized value of (5.22 with respect to the argument in the latter obeys two exact specific sum rules linked to the
the exponential. According to (5.28), the sum of the four fact that the density of charge in the OCP is proportional to
bonds is equal to the density of particles. Indeed, it can be shown exactly, by

o o using the equation of mechanical balance for every volumic
— Be.8.' Piinearized chaih %L ) = = BE4Ear Petecd £, L") element 30,37, that

+W( %, %),  (6.16 epggp( k) _ k2

1+ ——5—>+ 2). :
=50~ M gz ol 619

C. Inadequacy of the standard perturbation theory

Daieclr X, X") decays faster than any inverse power law of
the distance, wheread/(r,X,X') has an algebraic falloff. x; is the isothermal compressibility derived from the thermal
Henceforth, ¢gecfr.X,X’) is to be compared with pressurdsee(2.11)]. On the other hand, the system satisfies
¢RPA(r,n=0)=féds drpar,S), while W(r,X,X’) is analo- the exact sum rulé4.43. Under the assumption that every
gous toX, .o exp(—i27NS) drpa(r,n). frequency componenii* (k,n) of the exactproper polariza-

As a conclusion, the possibility of algebraic tails in thetion JI*(k,s) is invariant under rotations ok, it can be
guantum correlations already appears in chain potentials. Ishown that, if these frequency components have algebraic
the RPA theory, they lie in the nonzero-frequency compo-decays, so do the corresponding components of the exact
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total polarizationJI(r,s): JI(r,n#0) has the same algebraic
decay asJI*(r,n#0) and if JI*(r,n=0) decays as 17,
JI(r,n=0) has a /" falloff.
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because, as discussed in paper I, the induced charge density
decreases only asrf/and not as 1. The latter result is also
obtained from the loop formalism, which allows one to ex-

The argument can be summed up as follows. According tdibit the classical macroscopic screening in a nicely tractable

the sum rules(4.43 and (6.5), the smallk expansion of
JI(k,n+0) starts agk? and this term of ordejk| is different
from —1/Be®v(k)], which is the corresponding term for

way. Eventually, the point of view of the Feynman-Kac rep-
resentation proves to be more efficient than the standard per-
turbation many-body theory to study the large-distance be-

the opposite of the classical structure factor, according to thbavior of correlations in multicomponent plasmas.

Stillinger-Lovett sum rulg4.42. Subsequently, according to
(6.2), the same is true fafl* (k,n#0), so that the order ifk|

of the first nonanalytic term is the same in the snkax-
pansion of  JI*(k,n#0) and in that of
JI(k,n#0): JI*(k,n#0) and JI(k,n#0) have the same al-
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APPENDIX A

In this appendix we show how, for a Hamiltonian inde-
pendent from the spin, a notion of exchange loops emerges
from the fact that the permutations can be collected into
classes where all the permutations have the same irreducible
cyclic structure. For our purpose, it is convenient to wite
in position representation with the following particular
choice {|[{r; ’Sfri}>}i=1v---iaNa for the basis of quantum

states, which must be symmetiiantisymmetri¢ under the

In the case of multicomponent plasmas, on one hand, thBérmutations of p?rticles of the same boso(fermionic)
screening rulé4.41) does not allow one to get any informa- SPecies. The{r;,S }) are chosen to be properly symme-

tion about the second moment &f,/(r,n) and, on the other

trized tensorial product; of the individual particle states

hand, an analog of the compressibility sum rule has not beej; ,Sﬁi(i)>,

found: the first terms in the small- expansion of

JI,./(k,n=0) are not known exactly. Subsequently, nothing

is known about the first terms in the smklbehavior of the
exactﬂ’;a,(k,n) and, even if the proper polarizatioi* of
a multicomponent plasma decays as”lhothing can be
inferred about the large-distance behaviorLbfL,(r,n) or

e(m,)
N,!

>

IKr; 'Sizi}>E y I1
Ta oz:l,...,ns @

®|rﬂ-(i) -Sii(ﬂ(i)»,

(A1)

a

where 7 is the composition ohg permutationsr,, each of

JI,,(r,n). In fact, as shown in paper Il, the particle-particle Which acts only on particles of species For eacha, the

correlation decays as rf/ and the smalk expansion of

H o

|k|% [whereas, in the case of the OCR,,,(k,n=0) is ana-
lytic up to the ordetk|* included. Then, according to a mere
dimensional analysis 0f6.6), the smallk expansion of
=.2.0M%k) might involve a nonanalytic term of ordék|.
However, this nonanalytic term of ordgi, which includes a
summation over the speciesand «’, has a zero coefficient

w2

{Na}u 1,...ng {wa}a:l,...,ns {77(’)(}0(21 n
seee Mg

il

X ®<rﬂ.r(i) ,Szzyi(ﬂl(i))we_BH{Na}
I

€(m,) ()Pt

sum over, runs over the whole set of permutations be-

/(k,n=0) involves a nonanalytic term only at the order tweenN, elementse(m,)=1 if the particles of species are

bosons, whereag,) denotes the signature af, in the case
of fermions.[We notice that, in the definitiofAl), the per-
mutationsr, act simultaneously on the position and spino-
rial variables of each particle, so that the; ,Sﬁi(i)})’s are
not eigenstates of the total spin operator, in genghalthis
basis, the infinite-volume limit of2.3) reads

>

®|r77(i) ,Sﬁl(’ﬂ(l)))},

2 fH dri
[N,!] ! {Sil(i)}izl,...i N

aNa

(A2)

whereSﬁi(i) can take the values Se; = Se, T 1.8, andr; is integrated over an infinite volume. For conciseness, we use
the convention that, i&,N,=0, there is no integration over positions or summation over spin states and the corresponding
contribution is 1. We relabel the indek by a composition of permutations-;1 and note thate(ﬂ'a)=e(77;1) and
e(m)) e(w;1)= e(w;owcjl) (wheree denotes the composition of permutatinrishen, since the number of permutations
betweenN , objects is equal tdN,!, we can eliminate the sum over the, in (A.2) and writeE as
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-y 21;[6(6;\1—.

{Na}a:l,.t.,ns {ﬂ'a}a:1 ..... Ng

X{ f 1 ar 2 ®<rw<i)vsii(ﬂ(i))|}eB';{Na}

I

®|ri,s;<i>>”. a3)

We notice that every permutation, can be expressed The signature of the permutatiom, only depends on the
uniquely as a product of cycles with no common elementsnumber of elementsla and on the total number of indepen-
Moreover, the signature as well as the result from the integent cyclesE and read$43]
gration over the positions and the summation over the spin
states in(A3) is the same for all the permutations that have
the same cyclic structure. The latter invariance is due to two
reasons: ifwr, and m, have the same cyclic structure, there
exists a permutatiorr, such thatw;=a;17raaa and the
Hamiltonian is unchanged under a permutation of the indices

(—1)Na= 352505, (A5)

The number of permutations in the same class is

of the particles of the same species. The set of the permuta- No! (A6)
tions , of N, elements can be seen as a partition in conju- N _—
gate classes, each of which is made up with permutations Hl [np!p"r]

with the same cyclic structure. Each class is characterized by

a sequencénplp-y,..n,, Whereny denotes the number of [N,! is the total number of permutations betweép objects,
cycles with a sizep in the decomposition ofr, into cycles ng! is the number of global permutations between cycles
that have no common element. Th§'s obey the constraint \yith the same siz@, andp is the number ofcyclic) permu-
. tations that act only on the objects involved in one ofn
N = 2 pne. (A4) cycles with a lengthp and that do not change the order of the
“ P elements inside the cycleEquation(A3) can be written as

2 é H EYN“ *1ng)e.3/‘aNa Nal
== Y N, .
{Ngta=1, ns {n }p:it.,Nj H [ng! pnp]
p
x| [ITd X @ (1 01y, % (i) [&PHin ®|ri,8§i(i)>} : (A7)
! {Sf,i(i)}izl sNe L1 I

The notation=* means that, for each, the ny must obey ng
the constraintA4). 7, is equal to 1 for the bosons anrell 111 H > (SE(m2(p.k,1))|SE(P.K, 1))
for the fermions and7’ is a composition of some particular @ p k= {SL(p.kDY=1..p o :
permutationst? in the class of the permutations specified by o
the sequenc{ang}pzly_,_ N,

Since the Hamiltonian does not depend on the spin, the XJ H dri({r zoqi}|
contribution from the spinorial part of the states factorizes
out into the product of the contributions from the spin con-with |{r.})=®|r;). The contribution from a configuration
figurations of the particles that are permuted inside eacbtts (p.k.)}=1, , is different from zero only if all the par-
cycle of then?'s. For a givenn®, we replace the indexby ticles that are permuted in the cycle have the same spin state
a quadruplet @,p,k,l) that labels a particle of species  |S2) in this configuration. Then the contribution of the con-
which is permuted under® inside thekth cycle of lengthp figuration is equal to 1 for every value th&% can take
and has an indek inside this cycle. Then the term in curly among the %,+1 possible ones. Subsequently, the contribu-
brackets in(A7) reads tion from the summation over the configurations

(A8)
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f mation of the Coulomb rings must include the ring

o 0 =0=--04-0—04 0«04 0—»0 4 0=r0 Jd.Z3[f°%A <, )2, which itself gives a divergent contri-
bution because of the nonintegrability @f/R)?. If we used

the decompositiort5.6) of f to build the auxiliary diagrams
+ ©+®+©+ ©+® G, the above ring would miss in the resummation because
two points in aG diagram can be linked by at most ofie
FIG. 6. Diagrammatic representation of the decompositizih bond. In order to make the above ring appear in(thdia-
of anf bond into the ten auxiliary bonds that are adequate for the grams together with the other rings with one internal Cou-
resummation of the weights associated with the points in the protolomb point, namely/d (7, %) "7, #;) and [d.;
type diagram®’ of the loop-fugacity expansions. The truncafee ZLfmC(/)I ,/ )]2 f is ertten as the sum of the foIIowmg
bond(B2) is denoted by a double dotted line. The extra bonds with f’-ponds:
respect to the decomposition of Fig. 2 are drawn as multiple bonds
with the graphical conventions of Fig. 2The symmetry factor 2 fci,cy), 7% ,¢), (¢, 7)), " %,.7)),
does not appear in the representation of a diagram.
% fcc 2 fcc . . fmc . X
{Si(p.k.)}—1. pis 2S,+1 for each cyclga,p,k) and the (4. 4) 2[1%(ci 2 (G T C),

total contribution from the spinorial part reads : , o
pinoniatp £(c; 0 M, ), ALEM( %, 0)T3, 3LFM™er, 4)T7,

S [x (Bl)
2S5,+1 A9
1_:[ H ( " (A9) whereft is a truncated form of; defined in(5.7),
Eventually, by using A4)—(A6) and (A9), we rewrite Z in fri( %, ) =112, %) —3[fCci ¢ )]
such a way thalN , does not appear in the coefficients. Thus ce mes o
the constraintA4), with N_=1,...%, can be released,” and —f5(ci e (i ,0))
p now run from 0 to, and(A7) leads to the formul&3.2). —f%ci ¢ fM(ci, ) — s E™ A4 e
APPENDIX B —3[f™(ci, ) 1% (B2)

In this appendix we resum the Coulomb divergencies offThe diagrammatic representation of the decompositizit)
the diagrams corresponding to the loop-fugacity expansiois shown in Fig. 6 and & diagram is drawn in Fig. (8).
of the density of loops. The resummation scheme leads to After a resummation of the Coulomb chains defined as in
formula (5.36 and the main differences with the loop- Sec. V B, thelP diagrams in formula(5.36) are defined
density expansion of the Ursell function, which arise fromunivocally, if we introduce charge-charge, multipole-charge,
the existence of articulation points, are stressed at the begi@nd charge-multipole bondg ¢, F}'°, and F:™, respec-
ning of Sec. V D. tively, that satisfy the following excluded-convolution rule:
In order to get finite weightsv(#) in (5.36, the resum- the convolutions FS%*FS, FI%FSC FSSFS™  and

FIG. 7. Typical auxiliary@ diagram and the prototype diagrdfrto which it contributes by the resummation process defined in Sec. V D.
An Fg bond is denoted by a solid line with a superscﬁﬂg, while the nonsymmetric truncated boﬁﬁ'z"T is denoted by a double solid line
with an arrow pointing to the end point that is not linked to any other paigtis a short notation for the weighty,.sse@ndz is the value
of the weightwpge- %’ﬁal} is a bare point that disappears in the resummation process, whetessa dressed point involved in a
convolutionf®® (£ 134 72 ™2, 72,); 7, is left over in the resummation process and appears as the intermediate point of a convolution
FCO( £, )+ FS™(#,,7) in the corresponding® diagram.# 1 is a Coulomb point and the borgif°™4(#{>%,7%)1? contributes to the
weight of 75, whereas7’; is not a Coulomb point, and the boéﬁf ™2(7,,7%) contributes to the truncated dressed bﬁrﬁﬂr( P, F3), In
which the contributions such a&§f™%(,,7%)]? are substractetbecause7 is linked only t0.7%). 7%, which is linked only ta7’y, is a
dressed point, and the bond linking, to 7% is a full bondFRZ( 74, 7’s), Whereas7’, which is linked only to%,, is a bare point and the
bond betweenz, and#% is a truncated bonG&’z“T( LarTe)-
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F % F ST appear only if the intermediate point of the chain
has Coulomb rings attached to it in the correspondihg @ —

diagrams[The weightw(#) does not depend on the posi- O + O + O

tion R; of the point7%.] Thus it is convenient to introduce

the notion of “bare” and “dressed” points, according to

whether or not the point carries Coulomb rings in the + O<I + O<I + O<I+ <>+
diagrams that lead to the considered diagiann Fig. 7(a),

713 is a bare point, wherea®, is a dressed point. The

excluded-convolution rule can be expressed as follows: there + + -+ + -

cannot be convolution§ S FS° FI%FSC FS%FI™ or

FD%FS™ where the intermediate point would be a bare

point. Moreover, in order not to count twice the Coulomb FIG. 8. Diagrammatic representation of the weight*’) (B8)
rings with at least one intermediate point that already appedif a dressed point. An arbitrary number of Coulomb rings are at-
in the weight of the dressed points that are also articulatiofched to”in the G diagram and the rings contain an arbitrary
points, we must define two kinds of dressed bonds: a “trun/umber of intermnal points.
cated” dressed bon EQTT(?/% .73, if 7 is a bare point that
is linked only to 7% in the P diagram[see the resummed
bonds linking respectively”, to &3 and %, to #% in Fig. Ns *

7(b)]; a “full” dressed bondF_in other casefsee the bond <4mB, €2, pzf D(X)Z0 o(X: B 1t4)
linking %, to 7%, and that linking7, to 7% in Fig. 7(b)]. The ot oped
nonsymmetric truncated dressed bond is equal to the full Ns 9p°2( B, 1ta)
dressed bond minus the contributions from the Coulomb =4m ei—

. . ) . = Ok,
rings with at least one intermediate Coulomb pdwhere «t H
7 is an intermediate Coulomb pojnt

2

0<«kg

= KZpp (B5)
B

In the case of fermions, the serié®4) over p is alternate.
Let us consider a noninteracting gas of quantum particles

em _p o ITEC(c i) 2= ESS(c ¢ ETY L with massm,, and spin B,+1 (with a=1,...n,) at inverse
R R, 2Pz (G o) = Fe(e 04 0y) temperatureg3 and with a chemical potential*®, such that
—AF™( 7 ¢ T2 (B3) its density satisfiespl3(B,ur%)=2;_1pSD(X)Zqp(X;
B, Then
The calculation of the resummed bonds is analogous to 2_y § 2 I B, %) B6
that of Sec. V C because the borfd§, f™¢, andf°™ play the Ke=AmB 2 & ey | (B6)
same role in both processes and the role played"yand A

. . . ;
fr in Sec. VC is performed in Sec. VD b§™ frr. s toimula is slightly different from the RPA expression

ccy2 ccgmec gccgcm mcy 2 cm 2 ;
I[ft' ] /%1’3;) fTh, fbf d, I[:fcﬂ F/%n’ca?:dcn[f "l (/sz W't:: the trﬁ (6.13. At this point, we may only conjecture that:® is an
aton - 'he bondsrz" Fz7 Fz', andfFg, have the increasing function o, with a finite derivative, so that Eq.

same expressions as the corresponding resummed bonds6) implies thatx? is positive and finite also in the case of
the loop-density expansion of the Ursell function, except thatermions.

the square inverse lengitf is replaced by The weight of a bare point is merely
. . Whard ) =2(7). (B7)
2_ 2 2
Kz_47718a21 eag«l p f D(X)Zqp(X) The weight of a dressed poimiy.essef”) is the sum of the

contributions from all the Coulomb rings that may be at-

9 Ns ) * tached directly to the poin¥’ in the G diagrams(see Fig. 8.
=3 4772 eaz P | D(X)Zq,p(X) According to the same topological argument as that used to
Ha -toeet B reexpressFg in terms of exponentials of sums of single
(B4)  chains,
Wressel?”) = Z(Q/?)[elr('/)) -1], (B8)

Indeed, the weight of the points in the loop-fugacity expan-

sion of the loop density ig(.%) instead ofp(#) and since  wherel () is the sum of all the Coulomb rings with at least
2(.¥) depends onu, only through the terniexp(Bu,)°, the  one internal point, in which the two bonds attached/tare
relation Bpz(£)=dz(%)ldu,) is valid for an interacting sys- either twof®® bonds, onef°® and onef™° bond, or twof™°
tem as well as for an ideal gas. In the case of bosty§  bonds. The root pointZ, has the particular weight

>0, k2 is positive andk, is real. Moreover, according to

(3.16), 2 is bounded by the finite valuep,, W(Z)=2(%,)e' 7, (B9)
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According to the definition (5.2) of  phains 1 M

| ()= —1B€2Yehaid 77, where 2 is the symmetry factor Ip( L) = s J IT [dZw( 7]
of the sum of ringsyh.id?%7). 1.(#) has a finite value P J m=1

given by (5.29,

I1 Fz} . (CY
P

At short distances in the space of the loop variables, i.e.,
1 (e (P 1—e kXX when a curve); nearly coincides with a curv€;, every
|r(L¢)=§ﬂeaJ0d7J0 dr IX(1)—X()] bond F, proves to be integrable. Indeed, the singularities
(B10) 1/R;—R;| and 1/Q;(7)—R;| in the various bonds are inte-
grable at short distances, as well as the singularities
The inequality] (1— e~ *?)/x]<«,, for x>0, can be used to LIRi—R;[>, 1[|R—R;||Q;(7—R;[], and 1jQ;(n—R;|* in
find upper bounds independent from the internal variales Fg'y. Moreover, when; tends t0 Q;, @gec(75.7))
Since the internal ener@',’;“(%) (3.7) of a loop is positive,  —y (7 .7%) tends to a constantp;p; x,, while the diver-
—BER (N +1,(A<(Bei/2)p?x,. However, a better upper gence of exp-Bjv (7, 7})] for e, e, <0 is smoothed out
b(()/)unorlr can be found _|f we exhibit the self-interaction energyby the functional integration over theJBrownian paﬂ{ns:on-
Eeei() of a loop with the potentiakp,(r)=exp(=«,r)/t  tained inD(X;). (The space of the paths that cross one an-
instead of vc(r). E;f’glf(.% is given by (3.15 with other has a zero measyrelenceforth, the five bonds, are
exf — k,|X(7)—X(7')| in place of 1JX(7)—X(7)| and it con-  integrable at short distances separately. The divergences that
tains neither short-distance nor large-distance singularitiegnight come from products of bonds, are in fact spurious
According to(3.15 and (B10), since they are introduced by the decomposition of the ond
1 ) A into auxiliary bondsf, whereas pro_ducts of bondsare _in-
— BEce{ ) +1 () = _BE;béf(gj)Jr 5 Beif drf dr tegrable at short dlstanceg. By sunablly collectlng }Itheha-.
0 0 grams together, the possible short-distance divergencies of
[TIF,]» must disappear, as is the case in the classical proto-
X{1= (1= 8p(r),p(r) (7= P(7)] type diagrams introduced by Meerpf0,41].
— e X(7) = X(+)] The integrability ofl ;(£,) at large distances in the space
) of the loop variables reduces to the study of the IdRge-
IX(7)=X(7")| behavior of the bond$ (7 . 73)=F (R;; X; X;) between
(811 internal points and to the study of the larg®;(n)—R;| be-
havior of the bond$ (2, ,7)=F (Q,,R; ,X;) between the
foot point #, and internal points/; . Indeed, the integrals
over the variableX=({t;}—1, _,—1,{§h-1, . p) of any poly-
nomial in the variableX multiplied by w(#)=w, ,(X) are

1-e

L7 =P()]}

This rewritting makes no spurious divergencies appear. Th
first term on the right-hand side @B11) is negative and the
second term is lower than

1o p P finite because, according to the conclusion of Appendix B,
EﬁeaKzL deo d7'{1= (1= Sp(s),p(-)) ([ 7= P(7)] the weight w(#) is bounded by the Gaussian
exd — (33 tf)/)\z], while the measurellf-,D(&) is also
—[7'=P(7")])}=piBex,. (B12)  Gaussian. At large distances, the dressed bdnifs FS™,

andF 7' have exponential falloffs, whileg and FCRrZ“T decay

- algebraically as the leading term in the asymptotic behavior
|2(7) | =125 ()] el FEF ] of v —Vgeer. FOF @ dressed bond between two internal points
o 7 and 7}, this tail starts as the B term Wy(R,X; X;)
<|z} (ot 3€ik,)|e B, (B13)  given in(5.34. For a dressed bond betweéf, and an in-
ternal point”} , v —v e DENAVES as

Eventually, we get

The upper bound iiB13) is the fugacity of a noninteracting
loop in which the particles have a chemical potential that

includes the self-energy of a point particle creating a poten- Pa Pj

tial in the manner of Debye, exp(x,r)/r. While [wp, {7 f de dr'{o((7—P(n)]-[7"-P(r") -1}
(B7) is bounded by the absolute value of the free-loop den- 0 0

sity |z’;,p(ua)|exp{—E%({t|})], according to(3.16, (B13) 1

provides an upper bound foWyressei?) | <[Wpard 2| X{Xj(T’)'VRj(W>

+|z(»)|exdl ()], according to(B8). !

1
— . 4 . 2 —————————————
APPENDIX C T3 [Xj(7") VRi] <|Qa(7)—R]-|)
In this appendix we study the integrability of the re- 1
summed prototype diagrams for both the loop-fugacity ex- +0 m . (C2
a i

pansion of the density of loops and the loop-density expan-
sion of the Ursell function between loops. The dependence
of the density of loops upon the extension of loops is alsorhe existence of articulation points implies that, when two
discussed. clusters of points in & diagram are separated by a distance
Let us first consider the convergence of the intedral R, each cluster keeping a bounded size, the integfHird]
associated with the diagrai may decay as — vge if the two clusters are linked to each
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with the correspondingy diagrams can be only conditionally — Bij
convergent.

An analogous problem exists for the coefficients in the 1
fugacity expansions for the pressure and correlations in two- X f D(Xj)Gz(|Xj|)[Xj(T')'VRj(m>
dimensional classical plasmas without any resummation. In Al
the case of neutral systems of particles with arbitrary charges 1 1
(non-charge-symmetric cgsand hard cores, Spef89] has +3 [Xj(T')'VRj)]Z(m)
shown that the coefficient of ordéf in the fugacityz does a !
exist for sufficiently low temperatureB<T, if it is calcu-
lated as follows. The configuration space is subdivided into +0
regions corresponding to spatial configurations in which the
particles are grouped hierarchically into neutral clusters, suctn (C3) and(C4), we have omitted the dependences upon the
that the interparticle distances within a cluster are an order ofariablese, p, and 7 in the notationG; . According to the
magnitude less than the distance from the considered clusteptational invariance of the various measures and bonds, the
to any other disjoint cluster. Because of the existence of thguantity G,(|X;|) is invariant under rotations oX;. As a
boundary, a further subdivision of configuration space intoconsequence, after integration ovéf, the term(C3) does
subregions must be made. Within a given subregion, eactanish, as well as the first term (€4), while the second
cluster may be either averaged over orientations or confinetérm in(C4) is proportional taA[1//Q,(7)—R;[] and is in fact
to lie near the boundary of the system of finite volumeAt  short ranged. Eventually every graphcorresponds to a fi-
sufficiently low temperatures, when calculating the contribu-nite integrall ;(%,).
tion from the various configurations to the coefficientzlf Now, we turn to the dependence pfZ3)=p,_p.(Xa)
the contribution from any subregion involving a cluster con-on the variable, . Firstl(%,) remains finite when one of
fined near the boundary proves to vanish in the infinite volthe variableg{t ), _, o—1. 1€ -1, p) becomes very large,
ume limit, while the contribution from subregions where all j e, when the extent of the cun&®, becomes very large.
the configurations are in the bulk is finite, if the orientations|ndeed,| .(#,) defined in(C1) can be written as
of the neutral clusters are averaged before the integration
over the remaining coordinates. In the present case, any pos- 1
sible 1R? or 1R® terms in the large®,—R;| or largeR;; In(Za) = S, f
expansion of JIF,], is generated by the existence of an
Fr, bond or aFg’y bond that links two sets of loops that are

not connected to each other by any other bond. By analogy
with the result of Ref[39], we expect that the integration
over the internal degrees of freedof(shapes of the loops  Where the7’’s are theJ(P) points that are linked to~, by
and the relative positions of the loops inside each clustean F, bond in the graphP. The dependence of
must be performed before the integration over the veRtor |p(%,)=1p(X4;a4,Pa) ON the variableX, originates from
that characterizes the relative position of the two clusters. Lethe bondsF™(,,77), Fr(%a,77), of FRH (%2, 77).
obe e e pontofhebond hat o 1 he s Cuter e b 4.7 or F7(7,./1) clepend o,
u;,ae the 'n(I)tationEt _R _‘RO andR.—R. —R Afigr inte. but not onX,.] On one handF™(Z,,77) is proportional
oa a0 R to the potential in the manner of Debye createdRih by a

gration over the loops inside the clusters, excéft, #, . . Pa
and 7}, and integration over the shapg of 7, the pos- closed curveQd,(7) with a densityo,(r)=Jy*d7 5(Q4(7)

sible nonintegrable tail that may come from the leading term— 1. Thus, when the extent of the curd®, becomes very
of v—veeq 1IN the asymptotic behavior of large, after integration over the internal poir’ﬁ$ , the vari-
JDXN)WA) [T 20 97mW(Z ) [ JIF ]y has the following  ous bondd="(, 77 ) give a finite contribution td ().
form. If 7% does not coincide with”,, the latter leading On the other hand, when the distance betwe&nand each
term is given byW;(Ry;,X,X;), which reads point of the curve ©, becomes large, the bonds
Fr(%a,7}) and F‘F:{Z“T(_%é,;ﬂ/‘f) decay as the potential
(C2), which is proportional to

other by only one dressed bond. The integrals associated jpo

Pj
dffo dr{8(r—P(n]-[7 —P(+)])-1}

0

CELR ] €4

I(P)

[ [d7r w1
j=1

J(P)

X jl:[l F(Za ,57’,*)}g({f/?}j=1,...g(r)), (CH

Po Pj
gy | "z [ar a0 Pea1-17 — PG D-1) 1
J drjo ds['&a(r,s)—aa(r)]

XGa(Rao Xa.Xo) [ DOX))GA1X)) - )
X E er(|'+S)~VR1<|r_—R

. , 7)+0
X[Xo(f)'VROJ.][XJ(T’)'VRO]](R—OI_): (C3 =0 :

i

(C6)

. —~ . . —~ _ pa _
If 7, coincides with 7, , the algebraic tail is given by the 1he densityoy is (?Jeiu;ed asay(r,s)=Jo"d7 (7 _P(_T)
asymptotic behavior ofv —veecd(24.R; . X;) [see (C2),  —8)8(Qa(7) —1)=22,"6(Qy(I +s) —r). The contribution
with the result of the potential(C6) to | p(X,;a,,p,) remains finite when
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the extent of the curvé), becomes infinite because,(r)
and a,(r,s) are nonzero only on the cun@,, which has

CORRELATIONS IN QUANTUM PLASMAS. | ...
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Let us consider the integrability of tHé diagrams when
they are multiplied byp(%,)p(4,) and integrated over

essentially the space dimension of a Brownian trajectoryD(X,)D(X). At short distances, thél diagrams are inte-

Since the measur® (£),) is Gaussian/[TI-,D(£)]1:(Z,)
also remains finite when the size of a givep goes to
infinity. At this point, we may only conjecture that the
same is true for[IIP_D(£)]|=plp. By using p(%,)
=W( %)=l p(£,) [see (5.36 and (C1)] and the bound
(B13) over the weightwv, we get

p
Hlljl D(&) |p(Za)| <|Zh p( ot 3€5k,)]
1 p
xexp( ~ 57 2. [t 2) Iljl D(&) ‘; I Za)|-
(C7)

grable for the same reasons as thaliagrams. As argued
previously, the density(7’) is assumed to decrease very fast
and the integrability of théI’diagrams, when the distances
between the loops become very large, is determined by the
largeR behavior of the bond$. These resummed bonds
decay at least as theRY termW;. Let us consider two sets

of points in a giverl diagram: a set of internal pointkop
variables and the set containing the other internal points and
the two root points. Since evely diagram is connected and
does not involve any articulation point, there are at least two
paths of F bonds without any common intermediate point
that join the former set to the latter one. When the distdhce
between the two clusters is far larger than the distances be-

Thus p(#,) and f[TI[- 1D(§'a)]p(;%;) are expected to decay tween the loops within each cluster, the integrdhiF] 7

faster than any inverse powerlaw in the variablescorresponding to this configuration behaves at least as
..... (1/R%? and the integral is absolutely convergent at large dis-

This is coherent with the fact that, in the present formalismgances. The same mechanism ensures the integrability of the

the density of quantum particlgs? is deduced fronp( %)
by (4.3.

Mayer diagrams for classical dipolar fluifi44].
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